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Abstract

In evolutionary computation, a goal-based objective function is typically un-

able to include the local challenges on the way towards its fulfillment and tends

to to cause the search to converge prematurely. Therefore, this work proposes

to use objectives that are defined by different aspects of an individuals in-

teraction with the environment and a selection procedure able to reallocate

search efforts in order to avoid convergence. The objectives, curiosity, novelty

and evolvability, differ in the time-scale they operate over and the amount of

information they include about the problem structure. The common theme

of these objectives is their tendency to increase the diversity of behaviors,

which is assumed can act as general-purpose utility value. The goal is to

combine the benefits of the objectives by optimizing subsets of them simulta-

neously with a multi-objective EA. Entropy is used as unifying framework for

modelling the objectives and determining which of their values are considered

desirable. Using entropy for the latter part relies on the fact that degenerate

behaviors are more pervasive in search spaces than functional ones. Thus,

selecting for high-entropy values implicitly treats the frequency with which a

behavior occurs as a heuristic of its interestingness, reallocating search efforts

towards diversity. The performance of the different objectives and selection

methods are evaluated by solving deceptive navigation tasks. Verified on a

more challenging biped locomotion experiment, the new finding of this work

is that entropy selection is as good or better than optimization. Concerning

the individual objectives, these work’s results support previous findings that

novelty is a very good indicator for selection and additionally show that it

can be efficiently modelled with entropy. The method of modelling novelty

with entropy is shown to be applicable to many, possibly higher dimensional

and less informative behavioral characterizations simultaneously without a de-

crease in conceptual simplicity and computational efficiency, indicating how

future research could explore more complex behavior spaces and problems.

Concerning the evolvability objective, which describes the capacity to pro-

duce diversity and generalization, this work investigates how it can be esti-

mated from the many individuals discarded during search, in order to avoid
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the many extra evaluations necessary to calculate it precisely. Also, this work

proposes how an elitist-multiobjective EAs could interpret evolvability as adap-

tive variation without referring to a specific task. Taken together, the negative

results of both evolvability-estimations indicate that different behaviors might

have different potentials for evolvability and should therefore not be compared

on it globally.

Kurzfassung

Die primäre Abstraktion in Evolutionären Algorithmen ist die sogenannte

Fitness-Funktion, welche darüber entscheidet welche Individuen für die nächste

Generation ausgewählt werden sollen. Typischerweise misst die Fitness-Funktion

die hnlichkeit zu jenem Verhalten, welches die Aufgabe löst die der Experi-

mentator im Sinn hat. So kann mit Hilfe der Fitness-Funktion zwar erkannt

werden, dass die Aufgabe gelöst wurde, jedoch können keine Information über

die lokalen Hindernisse modelliert werden auf welche ein Individuum auf der

dem Weg zur ihrer Erfüllung trifft. Dies führt gewöhnlicherweise dazu, dass

die evolutionäre Suche frühzeitig konvergiert und in lokalen Optima stecken

bleibt.

Deshalb schlägt diese Arbeit vor die Fitness-Funktion dahingegend zu verändern,

dass Sie unterschiedliche Interaktionen eines Individuums mit seiner direk-

ten Umgebung erfasst. Auerdem präsentiert diese Arbeit eine Anpassung des

Selektionsmechanismus, sodass Konvergenz vermieden wird. Die alternativen

Zielfunktion, welche an Stelle der Fitness-Funktion zur Bewertung der In-

dividuen dienen, sind nach den biologischen Eigenschaften Neugier, Neuheit

und Evolvierbarkeit modelliert. Sie unterscheiden sich bezüglich der Zeitspan-

ne innerhalb der sie definiert sind und der Menge an Information die sie aus

der Umgebung des Individuums verwenden. Ihre Gemeinsamkeit ist, dass Sie

alle die Vielfältigkeit von Verhalten belohnen, welches als allgemeingültiges

Nützlichkeitskriterium verstanden wird. Ziel dieser Arbeit ist es die Vorteile

der einzelnen Eigenschaften miteinander zu vereinen, indem man sie gleichzei-

tig mit bereits bekannten und dafür geeigneten Algorithmus optimiert.

Als Rahmen um die drei Eigenschaften zu modellieren und auszuwählen

welche ihrer Werte für den Fortschritt der Suche besonders wichtig sind, wird
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der informationstheoretische Term Entropie verwendet. Dieser ist besonders

dafür geeignet, weil er die gesamte Suchhistorie in einer Verteilung darstellen

kann. So kann genutzt werden, dass die Mehrheit aller Verhalten im Suchraum

degenerierte Verhaltensweisen sind und nur wenige tatsächlich funktional. So

reicht allein die Häufigkeit, mit der ein Verhalten gefunden wird als Indika-

tor für seinen Wert bzgl. der Suche und kann somit genutzt werden um das

Konvergieren der Suche zu vermeiden.

Um den Erfolg der vorgeschlagenen Methoden zu testen, werden die Eigen-

schaften benutzt um zwei Navigationsaufgaben in Labyrinthen zu lösen und

eine dritte, deutlich schwierigeres Problem zu adressieren: Das Koordinieren

eines zweibeinigen Roboters. Die Ergebnisse dieser Arbeit bestätigen bereits

bekannte Erkenntnisse, dass Neuheit allein gut geeignet um zu selektieren und

dass sie effizient mit Entropie modelliert werden kann. Es wird gezeigt das

letzteres auch für höher dimensionale und weniger informative Verhaltensbe-

schreibungen ohne einen höheren rechnerischen Aufwand effizient gelöst wer-

den kann, sodass diese Methods auch für komplexere Probleme und Verhalten

anwendbar ist.

Da die Berechnung von Evolvierbarkeit normalerweise viele zusätzliche Eva-

luation impliziert, untersucht diese Arbeit weiterhin, ob es möglich ist diese

zu vermeiden und entwickelt mehrere Heuristiken welche versuchen Evolvier-

barkeit mit Hilfe des Stammbaum eines Individuums abzuschätzen. Ebenfalls

wird eine neue Interpretation vorgeschlagen, wie Evolvierbarkeit unabhängig

von einer bestimmten Aufgabe verstanden und gefördert werden kann. Das Er-

gebnis, das keine der beiden Methoden funktionieren, wird analysiert und die

Vermutung aufgestellt, dass unterschiedliche Nischen unterschiedliche Potenti-

al für Evolvierbarkeit haben und dieses Kriterium deshalb weniger für globale

Selektion geeignet ist.
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1. Introduction

1.1. Introduction to Evolutionary Robotics

The classic approach in robotics is to build a robot incrementally: First the ac-

tual robot is designed, equipped with sensors as the roboticists think is appro-

priate, followed by modules for perception, planning and action. Evolutionary

Robotics (ER) [3] takes a different approach by evolving the complete sensori-

motor control loop and/or the robot morphology in one go. ER has successfully

been applied to rather simple, well defined robotics problems such as naviga-

tion tasks [4], ball-collection [5], locomotion [6, 7, 8] or robot design [9, 10]. An

example of ER’s long term ambitions is given by the Golem Project [11], which

evolved original, 3D-printable robot morphologies, including control structures

that would execute efficient gaits. Such automated, autonomous design of so-

lutions allows to avoid any preconceived notions and anthropocentric bias a

human designer might have and can potentially find new innovative solutions,

developed from the robot’s embodied point of view of the world. The benefits

of this more holistic approach become evident when ones tries for example

to design energy efficient and compliant robots: By seeing design and control

as one problem instead of two separate ones, one can discover and exploit

synergies between morphology and control structure. The cockroach gives an

impressive and well-studied example for that. It achieves extraordinary speed
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Chapter 1. Introduction

and can traverse obstacles three times the height of its center of mass with

a relatively simple motor control pattern. The coackroaches’ secret lies in a

dynamic interaction of its posture, a timed feed-forward controller and the

passive-elastic properties of its structure, also known as ‘preflexes’ [12].

But yet, such goals are still far from being reached and as it is still a relatively

young field, there is an uncertainty about the practical role ER can play in the

field of artificial intelligence (AI) [13]. The traditional perspective casts evo-

lution as a metaheuristic black-box optimizer, suited for finding the best solu-

tion to a narrowly defined task. An alternate, more recent perspective focuses

more on evolutions capacity to produce a diversity of solutions [14, 15, 9]. ulti-

mately aiming to provide the roboticists with a representative collection from

the whole spectrum of solutions, instead of just one possibly optimal solution.

The following paragraph will briefly introduce the basic principles shared by

all types of evolutionary algorithms, whatever their desired purpose.

1.1.1. Principles of Evolutionary Computing

To capture the essence of natural evolution in an algorithm, methods from

evolutionary computing, such as genetic programming [16] or evolutionary

robotics, adopt the principle of blind variation and natural selection to a pop-

ulation of randomly assembled solutions. These solutions (also called individ-

uals) are encoded on genomes - short parametric descriptions from which the

solution can be reconstructed. Genomes can be modularly reassembled so that

individuals can spawn offsprings either by simply copying their genomes or by

mating with another individual. In genetic programming for example, where

the solutions are programs, genomes consists of lines of code. In evolution-

ary robotics, a common choice is to evolve individuals as control structures

for certain robot morphologies. The control structure most typically used are

artificial neural network (ANNs), whose inputs are the robots sensor values

and its outputs are the motor commands used to drive the robot. The mor-

phology and weights of the ANN are then encoded on a genome, which, when

loaded into the robot, can interact with the environment for a certain amount

of time, thereby creating the individual’s behavior (also called phenotype).

Each generation the most successful controllers are chosen for reproduction

and mutation, generating the next generation of controllers which, on aver-

age, is more successful than the generation before. Thus, the idea is that over

generations behaviors evolve that are adapted to the environment and achieve

high performance at a selected task.

In nature, the selection process is assumed to favor those mutations that are
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beneficial and increase the chances of an individuals survival. In the case of

ER, the selection is based upon a utility value assigned to each candidate solu-

tion by a specific function. This function is to favor those candidates that are

more likely to be successful at the problem the experimenter set out to solve.

Whereas most branches of AI refer to the function that is used to measure the

progress towards a goal as the objective function, evolutionary roboticists call

it the fitness function, metaphorically referring to Darwin’s ”survival of the

fittest”.

1.1.2. Problems of Fitness-Guided Search

Whereas fitness in nature is associated with high reproductive success, it can

be freely defined by the experimenter when evolution is simulated on the com-

puter. Usually it is done so with respect to a specific task the experimenter

wants to solve. Akin to a horse breeder who acts as a selective force by only

allowing the fastest animals to mate, evolutionary roboticists have hoped to

evolve solutions to problems simply by describing how success on their problem

would look like. If, for example, the experimenter wanted to evolve a controller

for a bipedal walking robot, the fitness function would measure how far the

robot walked before falling over. Thus, it would not pose any constraints on

how the walking motion should look like. Possibly because the experimenter

is not able to or because he does not want to specify how a solution to that

problem shall be found. Consequently, the fitness function is just measuring

how far a candidate solution is away from fulfilling the goal and is, next to the

representation of the genomes, the only aspect specified by the experimenter.

But as the fitness function must judge both a candidates proximity to the

goal and whether it has good prospects of fulfilling it in the future, its design

is particularly hard. Especially the latter part is problematic, as there is no

guarantee that there exists a smooth path of increasing fitness towards the

goal.

This causes problems at different stages of evolution: At the very beginning

of evolution, when all solutions in the population are equally bad, the process

has trouble to get traction and take off, which is referred to as the bootstrap

problem [17]. The underlying assumption when using a fitness function mod-

eled on the desired behavior is that a series of small improvements towards

the goal will eventually reach it. This leads to the most severe problem: the

fitness function causes the population to prematurely converge into a single or

few types of mediocre solutions. This is the problem of local optima, which is

ubiquitous in AI [18].
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For more complex problems, the ones on which ER ultimately aspires to be of

help to roboticists, the shape of the fitness landscape can be very rugged, neu-

tral or deceptive [19]. In those cases it provides no hints, many contradicting

hints or deceptive ones that lead the search into a dead-end. Complex prob-

lems, such as controlling a bipedal robot, often require the discovery of many

intermediate solutions, some of them bearing no resemblance to the solution

itself. In the example of the bipedal robot, intermediate solutions would be to

balance the robot and to discover oscillatory motion patterns. But if fitness is

the sole criterion used for selection, than individuals that discover those step-

ping stones will be discarded by the search process unless they immediately

contribute to propelling the robot forwards. Therefore, the constant selective

pressure towards greater performance can act as a constraint on how solutions

can be discovered, inhibiting the discovery of innovative and more complex

behaviors, which might at first traverse a path of decreasing performance but

have a higher fitness in the long term.

This kind of convergence contrasts starkly with the prolific creativity and open-

endedness of natural evolution, which produces a wide variety of solutions to

the problem of surviving and reproducing in nature. Also, the organisms

evolved by natural evolution are quick to adapt to changing environments.

Similar adaptation skills are also desirable for robots, which, apart from a few

industrial applications, are build with the intention to be usable for a wide

range of tasks, some of them maybe unforeseen. If, for example a controller

to for a multi-legged robot is evolved, it should be able to adapt its gait if one

or several of its legs suffer damage or turn completely nonfunctional. Solu-

tions evolved with fitness-based search paradigms make no assumptions about

that, nor do they guarantee that the evolved solutions will be able to adapt to

a slight variation of the environment, the goal, or to a completely new problem.

Although unintended, the fitness function thus restricts how solutions can be

found. Its use to guide the search can prevent innovative solutions and hinder

creativity, as it implies that all solutions must be build by a series of benefi-

cial mutations. It is ill-suited for complex or deceptive problems, because it

assumes that these problems can shed light on path towards their fulfillment.

As this is not true, it causes the search to converge prematurely into local op-

tima and its narrow focus on one task can potentially harm the generalization

abilities of the learned solutions. The next section will present the approach

taken by this thesis to alleviate these problems.
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1.2. Objectives of this Thesis

To address the above mentioned shortcomings, the common approach is to

supplement fitness-guided search with diversity maintenance techniques [20,

21, 22, 23, 24, 25] that ensure a variety of candidate solutions and encourage

exploration. Yet in very big search spaces or very deceptive problem domains

random exploration is not enough and the drive towards diversity needs to

be directed towards useful or interesting structures. The direction in which to

allocate search efforts in such cases would ideally be one of both local and global

utility. One that it avoids getting stuck locally and benefits the search in the

long run. With the problem of local optima being ubiquitous in AI, Different

fields have proposed different ways to address this problem and this work picks

up on an assumption shared across many of them: A drive towards a diversity

of options does not only help to escape local optima, but can be beneficial on

the global search scale as well, effectively acting as a general utility value to

guide the search towards more complex behaviors. This suggests that instead

of their resemblance to the objective, one could evaluate search directions by

how much they contribute to increasing or preserving diversity.

While it is conceptually clear and widely accepted that increasing diversity

is helpful in preventing convergence [22, 26], it is a rather new perspective

that diversity can be worthwhile pursuing for its own sake, irrespective of any

task. In relatively simple physical systems, Wissner-Gross & Freer [27] have

shown that increasing an agent’s future options leads to a range of adaptive

behaviors that coarsely align with our intuitive concept of intelligence, with-

out such being specified as a goal. Conceptually very related to this are works

from reinforcement learning (RL) on empowerment [28, 29] that frame the

diversity of options as the amount of influence an agent can exert over its en-

vironment such that it can perceive it via its sensors. Agents that maximized

their empowerment were able to solve classic RL-tasks as for example pole-

balancing [29], but also more sophisticated ones, such as avoiding a stream of

spreading lava in a blockworld by building tunnels or drainage systems [30].

In the field of evolutionary robotics, Lehman’s work on novelty search [1] first

demonstrated the value of diversity as sole objective. By using a measure of

behavioral sparsity, novelty search completely abandons the fitness function,

instead selecting those individuals for reproduction that are most different

from their peers. Without any notion of an objective, novelty search discovers

behaviors that would have previously been specified as goals, such as bipedal

walking or maze-navigation. This led to the counterintuitive insight that in
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order to reach a goal one must not necessarily try to do so. The main reason

why novelty search is successful is that collects information about the environ-

ment in a principled manner. After the simple behaviors have been explored,

doing something new implies doing something more complex, often by adapt-

ing favorably to the affordances of the environment. Similarly, empowerment

neglects the reward function and is defined by the agent’s capacity to manipu-

late the environment. Logically, in absence of any task specification to inform

the search, the environment is the only source to leverage information from.

This suggests that the more interesting aspects of an individuals interaction

with the environment are captured in the definition of the diversity objective,

the more complex problems can be addressed.

In order to support this claim, I model three different exploratory search drives,

which increasingly make use of the environment to define their measure of

diversity: curiosity, novelty and evolvability. While all are concerned with

increasing diversity, these objectives differ in the time-scale over which an in-

dividuals interaction with the environment is measured: Curiosity, defined as

the diversity of the path an individual traverses during its lifetime, is limited

to the present. Novelty is taking into account all behaviors found during the

entire search, thus referring to past and present. The third objective, evolv-

ability, refers to an individual’s capacity to produce diverse offspring, thus

increasing its chances of being able to adapt to future challenges. By biol-

ogists and EC practitioners alike, evolvability is seen as crucial in ensuring

the potential for further evolution and has thus received increased attention

over the last years [31]. By preventing over-specialization and ensuring future

adaptability [32] it is acting in a role akin to regularization techniques in ma-

chine learning and has thus the potential to greatly enhance the reach of EAs.

But as it requires many additional simulations to compute it exactly, evolv-

ability does not lend itself well to be cast as objective. Therefore, this work

investigates different ways it can be approximated without additional costs,

trying to make use of the relatives in an individuals lineage and its offsprings

that go extinct, both of which are usually discarded without further use.

Another commonality across the general-utility approaches from the above

mentioned fields is that all of them feature the information theoretic quantity

entropy in a prominent role. Mathematically describing the dispersion of a

distribution, entropy can readily be adapted to measure different kinds of

diversity. I show entropy’s aptness for diversity based approaches by applying

it on two different levels. On the level of the individual behaviors, I use it to

model the above mentioned properties curiosity, novelty and evolvability with
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it, which I then apply to solve a deceptive maze-navigation tasks. Also, I then

show that entropy can be applied at the population level, by using it to balance

exploration vs. exploitation, or as it less commonly referred to diversification

vs. intensification. Therefore, an archive is used to store the objective values

produced during search. The entropy of the distribution captured by that

archive can then be used to estimate which values are most likely to indicate

search directions that preserve diversity. If, for example, the search treads on

the spot because it is trapped in a local optimum, the respective objective

values will accumulate and in turn be assigned a lower entropy value. As

the frequency of those objectives values in the archive increases, the local

optimum gets ‘filled up’ and the search progresses to other areas with different

objective values. Like that, entropy can be used to interpret the frequency of an

objective value as indicator of its interestingness. In order for this to work the

degenerated behaviors, which are the vast majority because most mutations

are deleterious, must be mapped to a small number of objective values. The

practicality of that use of entropy has been demonstrated by Weise et al for

fitness values [33] on a genetic programming problem and is here for the first

time applied in ER and adapted to task-agnostic objective functions.

The main findings of this work are therefore (i) to reaffirm that diversity

based objective functions outperform task-specific ones on deceptive problems,

(ii) to illustrate that the degree with which a diversity objective captures the

interaction with the environment contributes to its success and (iii) to show

that entropy is well suited to model diversity-based objectives and select which

of their values are favorable for the search progress.

These findings are then verified in a considerably harder problem domain:

Evolving gaits for a bipedal robot. Albeit not significantly outperforming the

objective based methods in that domain, the gaits evolved with entropy based

methods are more natural and show a greater potential for further improve-

ment.

A secondary contribution of this work comes from the implication of the

failure to approximate evolvability from the discarded individuals. A possible

conclusion of this is that different behaviorial niches have very different po-

tentials for evolvability, i.e. an individuals lineage can spread out more or less

depending on where in the environment it is. These results might be instruc-

tive for other researchers wanting to estimate evolvability, i.e. they could try to

interpret the lineages in the context of the affordances of the local environment

of an individual, and not compare them globally as I did.
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1.3. Outline

This work is structured as follows: The next section will review the related

work and highlight diversity’s change of role from secondary to primary ob-

jective. Section 3 will describe the methodology of how the different diversity-

objectives are modeled with entropy, explain the assumption behind the differ-

ent possible heuristics for evolvability and how the maze-navigation task is set

up. Section 4 describes the experiments, their results and their attempted veri-

fication in the biped domain. Section 6 is a conclusion that sums up the results

of the different methods, discusses their limitations and possible directions for

future research.

2. Related Work

This section will present related work concerning four different topics. Firstly,

approaches from the fitness paradigm that aim to address more complex prob-

lems by making procedural adjustments or by shaping the fitness function to

include a measure of diversity are analyzed. Secondly, more recent works pre-

sented that argue in favor of neglecting the notion of fitness for a diversity

objective, which can lead the search to the same outcomes that fitness in-

spired approaches would have specified as goals. Works in the third section

are concerned with evolvability and how it should be understood in order to

be most beneficial in terms of future diversity. Lastly, I will present works

that show the role of entropy in evolutionary computing and highlight that it

is especially appropriate to measure diversity at different levels.

2.1. Modifying the Fitness Function

Usually, EAs use a fitness function modeled on the objective both to measure

its fulfillment and guide the search towards it. This often results in deceptive

fitness functions that make the search converge prematurely and get stuck in

local optima. Approaches to remedy these shortcomings are numerous and

take different angles. In [26], the authors suggest to classify methods in the

literature into ‘process helpers’ and ‘goal refiners’. Process helper methods
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address more complex problems by modifying the selection process, typically

by breaking down the fitness function. In order to avoid this involvement

by the experimenter, goal refiner approaches redefine the fitness function by

including a measure of diversity, thus introducing a drive towards exploration

that prevents the search from converging.

2.1.1. Process helpers

In an effort to avoid local optima and guide the search through the fitness

landscape, staged evolutionary methods use increasingly complex evaluation

conditions [26], for instance by gradually increasing the gravity of a simula-

tion to make balancing harder. Similarly, incremental evolution techniques

break [34] the goal down into sub-tasks or define a series of increasingly com-

plex fitness functions. For example, [35] first evolve a neural oscillator, then

use it to learn to walk. Instead of splitting up the fitness function, fitness

aggregation methods, as for example [36], reward intermediate behaviors by

aggregating subtasks into a single fitness function. That way, the intervention

of the experimenter is reduced to tuning the weights of the aggregated fitness

function, but the method still implies that all subtasks are obligatory in order

to reach the best performance. The drawback of all these approaches is that

they rely on prior knowledge of the experimenter how high fitness shall be

reached, which is opposite of the spirit of evolutionary search. Consequently,

no really innovative solutions can be found and the search will not conclude if

the hints given by the experimenter are misleading.

2.1.2. Goal Refiners

Both local optima and premature convergence are effectively consequences of

a lack of exploration. Therefore, introducing diversity maintenance methods

into the search process is the typical methodology utilized taken to address

them without relying on task-specific knowledge. A general methodology to

affect diversity is to increase the population size, yet this choice is not triv-

ial and increasing the population size is not always helpful [37, 38]. When

crossover and recombination are used as search operators to spawn new indi-

viduals, there can be a loss of lineage diversity, i.e. all individuals soon descend

from only one or few ancestors [37]. Burke et al [39] address this by modifying

the selection process to sample from different lineages and then compare their

fitness values. This increases diversity, but does so at the cost of reintroduc-
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ing potentially outdated individuals in the population. Being still closer to

how evolution happens in the real world, where there is no overall objective

but individuals instead try to outdo one another, co-evolutionary methods [40]

define fitness with respect to other individuals in the population. Then, the

fitness function is relative to an individuals peers instead of being static. In

competitive co-evolution the fitness of the individuals in one species is defined

with respect to individuals of another species, for example in predator-prey

scenarios [41]. Though such methods can potentially result in a never-ending

‘evolutionary arms race’, the progress of such methods is hard to track and

they often turn into cycles of behaviors that are discovered, forgotten and re-

discovered.

As already Darwin suggested, the competition in nature is fiercest between

those individuals most closely related [42]. In evolutionary computing (EC),

this notion is taken up by fitness sharing methods. Fitness sharing requires

to partition the population into different species wherein the fitness of the in-

dividuals is shared. This prevents overcrowding of one niche, so that no one

species can take over the population and cause the search process to converge.

Different distance measures have been proposed to split the individuals into

species or niches: Fitness uniform optimization [24], groups the population

according to the fitness values, thus keeping a way out of a local maximum.

One approach of particular interest to this work, whose principle I later adjust

to other objectives, is fitness frequency assignment [33]. It leaves the compu-

tation of the fitness objective unchanged, but then uses it to assign an utility

value to a solution according to how often other solutions with similar fitness

values have already been discovered during the entire search. Hence, it groups

individuals into species based on their fitness and ‘fills’ local optima up when

the search is stalled, naturally swinging back and forth between exploration

and exploitation.

Task-agnostic approaches have divided the population based on distances of

their encoding (genotypes) [23] or their age [25]. But as genomes are only

translated very indirectly into behavior, such approaches do not guarantee

functional diversity in the population. Measuring the distance of the decoded

genomes alleviates this problem but can be impractical in the case of ER,

where those are often graphs (e.g. ANNs) for which computing distances is

an NP-hard problem[43]. Recent approaches have therefore taken to measure

diversity in the space where it ultimately matters: the space of behaviors.

Such behavior based speciation [21] and diversity measures [44, 17] require

special metrics to the measure distance between behaviors. In [1], Lehman has
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shown that relatively simple, intuitive measures work well and other works have

shown that generic distances, such as information theoretic quantities [45, 46]

or hamming distances [22] work as well. Comparative studies [22, 47, 5] have

shown that these behavioral diversity measures outperform genetic ones.

The two previous sections highlighted that avoiding convergence by includ-

ing prior knowledge into the fitness function limits the scope of what evolu-

tionary search methods can achieve, diversity maintenance methods are best

to avoid convergence and that diversity is best encouraged in the space of be-

haviors. The next section presents works that depart further from the fitness

paradigm by promoting diversity not as an objective secondary to fitness, but

as an objective of its own right.

2.2. Diversity as Objective in ER

Works in the previous section have recognized the importance of diversity in

order to escape local optima, but at their core are still guided by the fitness

function. This section will present works from ER that pursue diversity for

its own sake, often leading to similar or better results than their task-specific

counterparts.

Therefore I first present works that are solely driven by diversity, increasingly

using more information from the environment, and then progress to their adap-

tations made possible by the introduction of multi-objective EAs. The latter

allows parallel optimization of multiple objectives and as such are a means of

increasing diversity by themselves. Their introduction to ER alleviated the

problem of having to choose between fitness and diversity and enabled to in-

vestigate how different, possibly contradicting features of a problem interact

(for instance the size of the robot vs. energy consumption) and vary in their

potential for fitness. With those works the role of diversity shifts from ensuring

that one high fitness can be reached, to helping increase the experimenter’s

understanding of the problem.

2.2.1. The Curiosity Instinct

A price paid for the convenience of simulating many generations on the com-

puter is that solutions derived in simulation sometimes drastically decrease in

performance when they are ported onto a real robot. In order to avoid that
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and ground the robot in the real-world, a sub-branch of ER called embedded

ER aims to develop evolutionary methods that can be applied on board of an

actual robot, possibly without any communication to an external source.

One such approach that disregards the objective and instead leverages infor-

mation from the environment is the ‘curiosity instinct’ [45], which refers to

the diversity the robot experiences during its lifetime. Therefore the experi-

ence of the robot, as captured by its sensorimotor stream, is partitioned into

states with a clustering algorithm. Curiosity is then measured as the entropy

of the trajectory of the robot, discretized by those states. The assumption is

that interesting controllers lead to high-diversity sensorimotor experiences. A

second drive proposed in this work is the ‘discovery instinct’, which is simi-

larly defined as the entropy of the robot’s path, but with respect to the entire

sensorimotor stream of the robot’s lineage. This assumes that although there

is no communication between individuals within the same population, parents

can pass on their experience when they are spawning children. Both drives

have been used to solve deceptive mazes, which are a common benchmark for

diversity objectives [48, 1, 44, 49].

The next section presents novelty search, which uses more information by

defining its measure of diversity by means of the behavior of the robot and the

entire history of robotkind.

2.2.2. Deceptive Problems and Novelty Search

Works on novelty search have been motivated by the realization that most

complex problems are deceptive. Whereas many notions of problem hardness

exist, often based on properties of fitness landscape, such as its ruggedness [50]

or the extend of neutral plateaus in it [51], the initial work on novelty [1] adopts

a more intuitive description. There, a problem is said to be deceptive if an EA

that follows the gradient of an objective will be lead into a local optimum More

generally speaking, deceptive problems are problems where the steps towards

the solution do not resemble it. Especially very ambitious objectives can not

necessarily be expected to illuminate a path to themselves. Then the heuristic

of fitness becomes uninformative, or even harmful[52]. In perversely deceptive

problems, the fitness will lead into the wrong direction at most steps during

the way. If, for example, the task is to find a path through a circuitive maze, a

fitness function that measures the bird’s eye distance to the exit, as it is typical

for maze navigation tasks, will effectively oppose the right path at least 50%

of the time, probably much more. In such cases, it becomes a liability rather

than a useful heuristic for finding the goal [48].
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Novelty search [1] is immune to the problem of deceptive fitness functions

as it discards the notion of fitness completely. Instead it uses a measure for

phenotypic diversity that favors those individuals that behave differently from

their peers. A selection of previously encountered behaviors is kept in an

archive and used to represent where the search has already been. An individ-

ual’s novelty score is then computed as its distance to its k nearest neighbors

within the current population and the archive. Thus novelty measures the

sparsity of the neighborhood of an individual’s behavior, using results from

both the past and present of the search. As novelty is a dynamic objective,

defined with respect to other individuals, novelty search is a divergent search

method and does not suffer from convergence. Also, as the objective of what

is novel is constantly changing, it never ceases to be informative and is thus

suited for open-ended search. Interestingly, novelty search often outperforms

fitness-guided search [48]. On its first introduction [1], it solved tasks where

fitness-guided search fails and its solutions were found faster. Also, when the

evolved controllers were ANNs, they were more elegant, i.e. they were more

compact, with less connections than those of their counterparts evolved by

fitness-guided search. This unnecessary complexity of the ANNs evolved by

fitness-guided search can be seen as evidence that the requirement of having

every step along way the being an improvement does actually hinder the dis-

covery of simple and elegant solutions.

Novelty search has been successfully applied to different tasks, such as maze-

navigation [1], evolving gaits for a bipedal walking robot [53], evolving different

topologies and controllers for walking robots [9] and evolving controllers for ho-

mogeneous [54] and heterogeneous [55] robot swarms. On the maze-navigation

task, it outperforms the curiosity and the discovery instinct [45], supposedly

due to its use of ground-truth information and its more extensive use of past

search results. Moreover, it has been found that novelty search can evolve

plastic ANNs that are capable of learning to adapt to a reward signal [56].

This task, ‘learning to learn’, is highly deceptive as it is almost always eas-

ier in the short term to learn a policy that exploits statistical regularities or

certain specifics inherent to the domain than to really learn to adapt to the

actual dynamics of the environment.

Novelty search is not a random exploration, because it collapses different

genomes and different ANNs onto the same point in the search space, un-

less they lead to a different behavior. Rather it presents a systematic way

to explore the structure of the environment: Although it might be easy to

discover a new way of behaving in the beginning, once all simple behaviors
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are discovered, doing something new requires doing something more complex,

often by adapting favorably to the affordances and dynamics of the environ-

ment.

Whereas the fitness landscape of complex problems is often rugged and irregu-

lar, the one searched by novelty is a lattice of connected nodes with increasing

complexity. Nevertheless, such a lattice can include novelty plateaus, areas

when the intermediate mutations a new behavior would require to not pro-

duce novel behaviors itself. In [49] Li, Storie & Clune suggest to also reward

new fire patterns in the neurons of networks. Their approach, dubbed ‘creative

thinking’, improves over simply searching novelty in a deceptive maze domain

and a sequential ball-collection task.

While being able to solve a given task, novelty search does not finetune a

found solution, as there is a constant pressure to innovate and the discovered

behaviors effectively act as repellents for further search. This drawback has

been addressed by the introduction of multi-objective search algorithms, which

will be presented in the next section.

2.2.3. Multi Objective Search

Multi-objective evolutionary algorithms (MOEAs) [57] allow to rank solutions

by more than one objective, thus keeping a population of diverse trade-offs be-

tween the objectives. Relying on the concept of pareto-dominance (see 3.5.1),

some individuals may maximize one objective at the expanse of all others

and others might find the best trade-off between a subset of objectives. This

allows to simultaneously optimize competing objectives, such as performance

and cost or diversity and fitness. Other than aggregate fitness functions, which

require to finetune the weights of the individual objectives, there is no need to

rank the objectives by their importance. MOEAs can also be used for single-

objective optimization, additionally supplemented with helper objectives that

provide a natural way out of local optima if the main objective seizes to be

informative. They permit task decomposition without implying an order in

which the tasks have to be solved or making any of them mandatory, as for

example demonstrated on a light switching task in [17]. Disadvantages are

that they can still suffer from deception [52], adding objectives is not always

helpful [58] and there can only be added about three extra objectives [59] so

that the typically used pareto-dominance principle that compares solutions

stays meaningful. Algorithms that deal with more than four objectives are

referred to as many-objective optimization methods [59]. Another issue from
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which MOEAs can suffer is the so-called domino-convergence [26], when the

optimization of one objective happens at a much faster rate than another, so

that they effectively happen sequentially. If that is the case, then the values

that slower converging objective reaches are determined by the value of the

other objective, which converged faster.

MOEAs have been applied in ER with great success. [44] use a MOEA to

combine fitness with a measure of behavioral diversity, which they measure

as an individual’s average behavioral distance to the rest of the population.

Searches with this additional diversity objective outperformed classical fitness

based approaches. Therefore this method will also be used as control method

to compare the criteria developed in this work. Especially for novelty search,

the possibility of using a second objective has led to many new variants. In

order to allow finetuning discovered behaviors to their full potential, various

works combine novelty with fitness [60, 61, 47, 48]. Their result is that this

combination is more effective than pure novelty or fitness based search. An-

other approach that makes use of a MOEA with the novelty criterion is based

on the idea that natural evolution finds many ways to solve the same problem

of reproduction and survival. In minimal criteria novelty search [62], all indi-

viduals need to meet the same minimal fitness criteria, which effectively prunes

the behavior search space so that solutions are found more consistently. Ex-

tending this idea further, progressive minimal criteria novelty search [63] also

freely explores the behavior space as long as the individuals meet a fitness

criterion that becomes stricter as the search progresses.

While the algorithms mentioned up to now do not include a notion of a task

to be solved, they are still compared by their maximum performance on it. The

outcome of one evolutionary run is thus measured by the success of its best

individual. This is still very different from natural evolution that produces

many species in one run, each of which successful in a different way. This is

not attempted in this thesis, but for a more complete picture of diversity in

ER, it is instructive to review algorithms that aim to do that. Especially, as

those algorithms shed light on how different ways to characterize behaviors

have different potentials for reaching high fitness solutions and how a problem

can be solved by exploring how different aspects of it are connected.

2.2.4. Quality Diversity

The above mentioned novelty-hybrid approaches add some biological plausi-

bility to EAs but are still a far shot off natural evolution. Although novelty
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is computed locally by comparing an individual to its nearest neighbors, the

solutions are compared globally on the fitness objective. Yet, as it is put in [9],

it does not make sense to compare grasshoppers with bears on speed for they

live in completely different environments. Such global fitness competition will

drive the algorithm towards those morphologies that are easiest to exploit. Ad-

dressing this, the novelty and local competition approach [9] explores a feature

space with novelty search and computes an individual’s fitness only relative to

those most similar to it. Consequently, the algorithm rewards individuals that

discover new niches to escape competition, mimicking the limited interaction

between animals of different niches in nature. The approach is used to evolve

different morphologies for walking robots and evolves a variety of functional

walkers with different combination of features (size and weight) in one single

run. At the cost of finding one potentially global optimum, the algorithm

finds many different locally optimal structures, increasing the experimenter’s

understanding of how the explored features are related.

This inspired the authors of [64] to coin the term ‘illumination algorithm’.

Other than multi-objective optimization algorithms, which aim to find just

the high-performing individuals for a combination of objectives, illumination

algorithms [65, 64, 66] aim to illuminate the fitness potential of the entire

search space. Another, recent work [15, 14] dubbed this type of algorithms

Quality Diversity algorithms (QD), as they aim to discover a diverse range of

high-quality solutions.

First introduced by Mouret, Clune and Cully [64, 67], MAP-elites (mul-

tidimensional archive of phenotypic elites) is the most widely applied QD-

algorithm. It is parallelizable and conceptually very simple so that it lends

itself to various adaptations. It discretizes a feature space into different bins,

for each of which it tries to find the highest performing individual in terms

of fitness. The feature space can be chosen such that it describes the behav-

ior of the robot [15] or any other aspect of the problem that is of interest to

the experimenter. Their choice can thus be motivated by their importance for

solving the problem or simply by the interest of the experimenter. An example

of the former approach is given in [64], where the features are an ANN’s to-

tal connection costs and its modularity. Here the underlying assumption was

that networks with lower connection costs tend to be more modular, which

makes them more performant and also favors evolvability [65]. In that way,

a two-dimensional feature space (connection costs and modularity) was used

to explore the much higher dimensional solution space (morphology and pa-

rameters of the ANN). An example without any preconceived ideas about
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how the features relate to performance is when the experimenter wants to ex-

plore the interplay of different morphology properties, such as the number of

legs, the body-size or the percentage of bone and muscle tissue [64]. Other

adaptations of features allowed solving very complex mazes [15], finding di-

verse walking strategies for the same robot morphology so that it could adapt

to damages [67], generating 2D-images to fool deep neural networks [68], or

leveraging their internal representations as feedback for a creative process that

produces new 3D printable objects [69].

Interestingly, for many tasks the best individuals found by QD-algorithms

were better than those produced by the algorithms that just searched for one

optimal solution. This indicates that the heuristic ’finding better solutions by

making random changes to good solutions’, which all evolutionary algorithms

generally adopt, must not be true for complex problems. The authors of [64]

confirmed that idea by mapping the lineage of the highest performing solutions

and found that those individuals often traverse a long path through very dif-

ferent areas of the search space, suggesting that the stepping stones necessary

to perform high in one area, must be developed partly elsewhere.

Another insight relevant for this work is given by Pugh et al in [15], where they

show that QD-algorithms only lead to good solutions if the behavioral char-

acterization (BC) that constitutes the feature space is aligned with the notion

of quality, i.e. ”finding novelty tends also to lead to higher fitness”. Extending

this insight in [14], they identify two factors that are indicative of a high degree

of alignment: (i) the maximum fitness values in neighboring regions of the fea-

ture space must correlate and (ii) each behavior must only describe a narrow

range of fitness values. If, for example, the task were to navigate a maze, an

example for a BC with high alignment is the individuals position at the end of

the simulation, as it indicates the exact distance towards the exit of a maze.

If instead the used position were sampled earlier, for example already three

seconds before the end, it would be less aligned with fitness, as the robot can

still change its distance to the exit. Consequently, BCs with high alignments

are needed to be successful in deceptive domains [15]. The latest adaptation

of MAP-elites [14] allows to optimize diversity with multiple BCs, an aligned

one in order to overcome deception and a second one that just represents a

BC of interest to the experimenter. 1

1As the major works on quality diversity and behavioral characterizations were published
between July 2015 and July 2016, parallel to the making of this thesis, their insights
were not considered in the design of the experiments. But as their methodology and
perspective on the behavioral characterizations are helpful in understanding the role of
diversity and the outcome of my experiments, they are stated here.
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As they were primarily designed to inform the experimenter about the fit-

ness potential of the entire feature space, QD-algorithms assign less resources

to the most promising areas of the search space. The fact that their best solu-

tions are still better than those found by optimization algorithms shows that

searching simultaneously for many solutions is more effective than limiting the

search to one objective. The solution to one problem (for example finding the

fastest robot with a very small weight-height quotient) may depend on step-

ping stones from related regions (controlling a robot with a medium quotient).

This highlights the importance of maintaining diversity and gives an intuition

on what the BC used to drive diversity must include to be helpful.

But to maintain a diversity, it first has to be produced. If one-step mutations

do not produce sufficient behavioral changes, then judging progress on any

objective, fitness or diversity, becomes much harder. Therefore the next sec-

tion will present works from ER about how the propensity of EAs to produce

diversity can be enhanced. Furthermore, works from related fields that show

that increasing future diversity can lead to even more complex behaviors than

those currently in the reach or ER.

2.3. Evolvability & Future Diversity

A trademark feature of natural evolution is its prolific creativity and ongoing

innovation. One key feature to achieve that is evolvability - an individual’s

or a system’s capacity to evolve. The interest in it, both of researchers from

biology and EC, has greatly increased over the last years [31] and there is a

disagreement in the communities what evolvability actually is. The first part

of this section will therefore present the different perspectives on evolvabil-

ity and discuss some theories about how high evolvability in nature comes

about. This latter issue will only be discussed superficially as it touches upon

the fundamental question of why there is an increase of complexity in natural

evolution in the first place - a topic that is hotly debated with very little con-

sensus [70, 71].

The second part presents how evolvability and its two main interpretations are

measured in EC and how the evolutionary search procedure has been adapted

in order to passively or actively promote it. The third part will then present

work from related fields that use the diversity of future options without the

constraining framework of EC. Their conceptual relatedness and their impres-

sive results show the value of evolvability and motivate the attempt to find a
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heuristic for it.

2.3.1. Interpretations and Effects of Evolvability in

Biology

In the current literature, there is no one way evolvability is defined, [72, 73]

but two common interpretations :

1. Evolvability refers to the genetic or phenotypic variety the population

can produce that can be affected by natural selection, irrespective of the

usefulness of that diversity for further adaptation [74].

2. In its second sense, evolvability refers to the ability to generate adaptive

variation. Other than (1) that is variation that helps to survive and

reproduce over the mid and long term. [75]. This second interpretation

ties evolvability to the ability to acquire novel functions [73], or even

breakthrough innovations [76], which is more powerful and includes the

first interpretation.

But whether or not one assumes the variation to be adaptive, evolvability

can be beneficial for evolutionary progress in different ways: A lineage that

is evolvable might need less mutations to produce novel traits, adapt faster

to changing environments or environmental pressures and, as Kirschner shows

in [74], reduce the potential lethality of mutations. Other works [72, 65] sug-

gest a connection between evolvability and modularity, which also is favorable

for quick adaptations. Another latent contributor to high evolvability might be

robustness. In [77], Wagner suggests that an individual’s robustness to neutral

mutations might also contribute to its evolvability, as mutations neutral in one

environment, might be adaptive in another one.

Although these properties are desirable for the process of evolution, it is ques-

tionable whether natural evolution actually selects for high evolvability, or as

Pigliucci asks: ”Is evolvability evolvable?” [72].

The path of evolution is governed by mutation, selection, and genetic drift.

Mutations are random and new variants are only stabilized into a population

by selection. Selection has no foresight and consequently no reason to sta-

bilize traits that provide future benefits, so that it might in fact sometimes

be harmful to evolvability [31]. In [78], Lehman shows that evolvability can

be a byproduct of genetic drift and nature’s tendency to accumulate niches.

Evolvable lineages are able to found and populate more niches. An effect that

can be enhanced by extinction events that act as evolutionary bottlenecks [79].
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Evolvable lineages have better chances to survive those extinction events, as

they are inhabit more niches. By randomly eradicating the majority of niches,

extinction events then free them from all established competition that might

previously have prevented an evolvable species to migrate. Afterwards, the

more evolvable survivors are faster at repopulating niches that were emptied

out. Day [80] supports this idea showing that genetic diversity does indeed

increase the colonization success of populations. Hence, although there might

be no immediate selection for high evolvability at an individual level, it can

occur at the level of species.

The next subsection will show how the different connections between evolv-

ability and evolutionary progress have been adapted and favored in EC.

2.3.2. Measuring and Encouraging Evolvability in EC

Given that EC has yet fallen short of its aspirations of solving really com-

plex problems or producing open-ended innovation that rivals that of natural

evolution or human designers, measuring and ensuring the potential for fur-

ther evolution is a concern for researchers throughout all branches in EC. The

works in this paragraph show that evolvability can be a concern at almost

every decision throughout the design of an evolutionary search.

Other than in nature, the way individuals are encoded on a genome is not

fixed, but depends on the experimenter’s choice of encoding. Therefore, rep-

resentations have different potentials for evolvability [75], according to how

much they facilitate the discovery of new viable phenotypes. Reisinger and

Miikulainen [81] propose a test to measure the evolvability of a particular

representation, separating it from the selection operators and the task to be

solved. Similarly, [82] gauge different encoding by their mutation operator’s

potential for evolvability with evolvability signatures. Their evolvability signa-

tures are a combination of the average change in fitness after a mutation and

the quantity of behavioral variation they generate, thus encompassing both

interpretations of evolvability. In [80] Day also takes into consideration the

strength of selection. If higher selection pressure is needed to produce varia-

tion, the evolvability is lower. Consequently, evolvability is seen as change in

genetic diversity per unit strength of selection. He further derives that when no

assumptions about selective strength are made, Shannon’s information entropy

of the genetic variation is the appropriate choice to measure genetic diversity.

The other choice of the experimenter is the fitness function. Here, evolvability

can be favored indirectly or directly. Indirect approaches rely on assumptions
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as how evolvability comes about, such as by using changing environments [83]

or fitness functions that provide many objectives [84, 85], emulating the high

number of niches in nature. Based on the connection between modularity

and evolvability, [86] encourages the discovery of modular solutions, by using

modularly varying goals. Similarly, [65] encourages modularity by punish-

ing connection costs, which lead to faster adaptation in new environments.

Another indirect way to favor evolvability is shown by divergent search pro-

cesses [1, 44, 46, 45], such as novelty search. By defining a moving target,

such processes favor lineages that are able to constantly produce novel phe-

notypes - and are more likely to be evolvable [87, 1]. Noteworthy, the finding

that novelty favors evolvability adopts it in its first sense, measuring it as an

individual’s capacity to produce many phenotypically distinct offspring.

If, as intended in this work, the evolvability measurements are to be used

to influence the selection procedure, measuring it becomes more challenging.

In order to be useful for differentiating between the evolvability of individuals

within the same population the measurements can not be done in retrospect,

but have to be available after each generation. In the related field of genetic

programming, where the individuals are computer code, approaches [88, 89]

often opt to define evolvability in its second sense, as the propensity to pro-

duce fitter offspring, which must be inferred by doing extra simulations. No-

tably, [88] show that one can do some of the computational work before starting

the evolution. They use machine learning techniques to build an a-priori model

to predict an individuals chance to produce a fitter offspring than itself. Later

during evolution they use this model to influence the selection process, lead-

ing to an overall improved fitness. Disadvantages of their approach are that

the model can not be adjusted throughout the search, is still computationally

expensive and that their approach depends largely on the definition of fitness,

which can be misleading.

In [90], Wilder and Stanley make another useful distinction that helps to

classify the different approaches aiming favor evolvability. They argue that

adaptive methods, such as using varying fitness functions or environments are

helpful in increasing the evolvability of individuals, whereas non-adaptive pro-

cesses (e.g. novelty search) increase the evolvability of the population. While

the former are beneficial for the offspring of an individual lineage, the latter

is beneficial for the search process in its entirety. They observe that processes

that are good for one kind of evolvability can hurt the other and vice versa.

Furthermore, they argue that non-adaptive methods, such as divergent pro-
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cesses, act at the level on which evolution ultimately is defined, the population

level, and consequently are more important. Thus, this perspective is useful

to reconcile some misunderstandings due to conflicting views on how to fa-

vor evolvability and motivate research to find more non-adaptive mechanisms.

Yet, a more recent work gives a reason why this might not be enough and why

promoting individual evolvability should be pursued as well.

In [91], Mengistu et al show that novelty and objective based search are

capped in their potential for evolvability. In a maze navigation domain, the

maximum evolvability reached by novelty search and objective based search

stagnated well below what was reached when evolvability was directly selected

for. When selecting for novelty or fitness, even numerous extra simulations

did not raise evolvability any further, indicating that some other incentive is

missing to produce complex and very adaptable individuals. Their algorithm,

called evolvability search replaces the novelty objective with a measure of how

many distinct offspring an individual can produce. Due to the extensive cost

of simulating many extra individuals to compute evolvability, the algorithm

was not designed to be of practical use, but rather as a tool for facilitating the

study and understanding of evolvability. One insight from that algorithm is

that evolvability by itself can be used to maintain diversity and to solve decep-

tive problems, the latter being demonstrated with deceptive mazes a bipedal

robot. Moreover, individuals selected for evolvability generalized better to

other mazes than those produced by novelty. This was true independent of

whether or not the individuals were used as starting points for further evo-

lution or applied immediately. This result dovetails with a previous work by

Kouvaris [32], that casts evolvability as evolutions generalization skill - an anal-

ogy they support by showing that regularization techniques known to alleviate

overfitting in machine learning, such as penalizing the complexity of the model

and introducing random noise, can be used to enhance the evolvability of the

learned solutions.

Conclusively, evolvability will play a crucial role when one wants to extend

the reach of ER to more complex problems. It can maintain and increase

phenotypic diversity, speed up the evolutionary process and ensure that the

learned solutions are not overly specialized so that they can still adapt to a

wider range of future problems.

To illustrate the value of the currently unattained goal of efficiently maximiz-

ing evolvability during selection, the next section presents works from related

fields that similarly quantify the diversity of future options, but outside of the
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constraining framework of EC.

2.3.3. Future Options as General Utility Value

This section presents different approaches from reinforcement learning, physics

and swarm intelligence that try to define locally useful, task-independent cri-

teria based on future diversity.

A related AI-domain, which also faces the problem of a gauging the contri-

bution of a local step to achieving a distant goal is reinforcement learning [92].

In reinforcement learning (RL) an agent needs to learn a behavior solely based

on a qualitative reward signal, telling it whether an action was rather good or

rather bad. As this reward signal is only given upon completion of the task,

the robot’s learning algorithm must decide which of the actions it took were in

fact critical for achieving the goal - a dilemma referred to as the delayed-reward

and credit-assignment problem. Similar to ER, RL-problems are of a compos-

ite nature so that achieving the final goal (for instance opening a door) requires

many previous actions that are not apparently related (grabbing the handle of

the door, pushing it down, etc.). Many of those intermediate actions merit by

themselves to be learned, irrespective of whether the experimenter wants the

robot to go through the door or not. Therefore, an alternate approach to using

a distant objective is to define an internal reward mechanism that drives the

robot’s exploration. Within the paradigm of external reward functions, explo-

ration is usually defined as not trying to solve the goal but doing something

else, possibly at random. Yet exploring a space at random quickly becomes

impracticable as the number of degrees of freedom increases. To avoid the

curse of dimensionality inherent to such random exploration, the homeokinesis

approach [93] suggests to guide the exploration by learning an internal model

of the world. With the sole obligation to keep moving and interpret the world

in terms of its model, the robot then explores the environment in a principled

manner. In order to improve its model, the robots must limit its exploration

to parts of the environment where it can more or less predict the outcome of

its actions from past experiences. In the initial work [93] interesting and seem-

ingly goal directed behaviors such as obstacle avoidance, ball collecting and

maze navigation emerged as a byproduct of that goal-less internal drive. Later

works [94, 95] extend that approach to more complex robotic structures, such

as an armband robot consisting of linked elements which develops spontaneous

cooperation with decentralized control.

Another internal motivation, whose authors also hypothesizes the existence

of a simultaneously local and global optimality criterion, is empowerment [96].
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Based on the idea that humans perceive the objects in the world based on

the affordances they provide to them, empowerment describes the degree of

control an individual can exert over its environment in a way that he becomes

aware of it via its sensors. Therefore, empowerment refers to the maximum

information an individual can imprint onto his environment such that it can be

perceived by its sensors. Maximizing empowerment has been used to evolve

efficient sensors [97] but also to drive an agent’s behavior in pole-balancing

tasks, maze domains [96], collision-avoidance arenas [98] or when interacting

with block worlds [30]. In the latter example, the agent had perfect knowledge

about the effects of its actions and discovered different ways to avoid a stream

of spreading lava, including tunnels, bridges or drainage systems. Noteworthy,

all those behaviors were discovered without being set out as goals, but only

from the agents drive to stay in control and to preserve its options.

In board games, such as othello or checkers, a general heuristic for the quality

of a situation on the board is mobility : an estimate of how many other states

can be reached from it. Game players that maximize their mobility seek out

states where they are in control of the game. Players who are losing typically

do not have many options left (e.g. check-mate).

In a physically motivated approach, Wissner-Gross and Freer [27] have

shown that an agent whose sole goal is to maintain a diverse range of future op-

tions surprisingly shows a range of adaptive behaviors that align coarsely with

the intuitive concept of intelligence. These behaviors included something alike

to tool-use and social cooperation between two agents, two behaviors that re-

quire cognitive functions that are often considered to be trademark features of

intelligence. However, the approach used required perfect knowledge of the sys-

tem’s dynamics and simulating all possible futures, which is unfeasible in real

world applications and even in simulation quickly becomes computationally

intractable with increasing degrees of freedom. But the idea that preserving

a diverse range of future options leads to self-organized spontaneous actions

has proved to be of value not only for individuals such as in [27, 96], but also

for a group of individuals as a whole: Garnett & Mann [99] show that assum-

ing that a swarm’s future is maximally uncertain (thus preserving as many

options as possible) explained the emergence of cohesive decision making and

could be used to derive predictions about social interaction rules for individu-

als in swarms that are consistent with other studies.

Although conceptually not applicable to ER, these approaches show that

ensuring diversity, especially with respect to future options, can act as a
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general-utility value. For both individual and populations, the sole objec-

tive of maximizing future options can lead to many different sophisticated

behaviors. Moreover, the complexity of the discovered behaviors increases

with the amount of knowledge about the interaction of the agent with the

environment. Especially the works on empowerment [28] and causal entropic

forces [27] show that if the agent understands the limits and affordances the

environment imposes upon him, a course towards maximum future options can

lead to impressive behaviors.

2.4. Entropy as Organizing Principle

This section will briefly introduce the origins of entropy, point out its general

properties and then show how it is used in ER and related fields.

2.4.1. Background

Initially, entropy was introduced by Rudolf Clausius as a measure of a thermo-

dynamical systems’ change of state when energy was added to it by a reversible

process. Later Ludwig Boltzmann reformulated this in a probabilistic way, us-

ing entropy to describe a systems’ internal disorder. For physical systems,

maximum entropy is associated with their equilibrium state, towards which a

natural system will spontaneously shift according to the second law of ther-

modynamics. In 1948, it was reinterpreted in new way by Claude Shannon to

found the field of information theory, which it served to measure the expected

information contained in a message and the minimum length of a lossless en-

coding. Its basic form, as used in probability theory statistics or information

theory, is depicted in equation 2.1.

H =
∑
i

pi ∗ log(pi) (2.1)

Without any meaning attached to the individual events, this definition de-

scribes the dispersion of a discrete probability distribution. The total sum

is bigger the more equiprobable the individual events are that make up the

distribution - the distribution with maximum entropy being the uniform dis-

tribution. For the individual events of the distribution a low pi leads to a high

entropy, and the respective events are said to be surprising or information rich.

The generality of 2.1 allows it to be used in many different contexts and the

next section will show that it is prominently featured in many approaches that
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are concerned with maintaining and promoting diversity.

2.4.2. Entropy in EC

Several works presented in the previous section rely on entropy to measure di-

versity. Both the curiosity- and the discovery instinct [45] measure the diversity

of the states visited by the individuals with entropy. The other internal drive

from RL, empowerment [28], uses entropy to measure the channel capacity be-

tween the agent’s actuators to its sensors. Also, entropy is used to measure the

diversity of the future paths, both for an individual agent [27] or a swarm [99].

Except for the last work, the use of entropy is restricted to the actions of the

individual.

When defined with respect to the entire population, entropy can be used to

assess the overall diversity present in the population as well as an individuals

contribution to that diversity. Generally a high population entropy signifies

that there is lot of diversity upon which selection can act. In cases of low popu-

lation entropy, the individuals are clustered closely together, so that evolution

degrades to random search. Day [80] states that measured upon the distribu-

tion of genomes, it refers to the genetic diversity in the population and can

be used as an approximation of evolvability. Rosca [100] used the distribution

of fitness values as a feedback to adjust the selection pressure. Liu et al [101]

do this for a genetic algorithm approximating a set of commonly used bench-

mark functions, effectively balancing exploration vs. exploitation and leading

to higher fitness and better convergence rates. In [102], population entropy is

used to adjust the crossover rate and the mutation strengths for a GA that

addressed the problem of frequency reuse of mobile bandwidth providers.

In [33], Weise et al define the scope of entropy even wider by using an archive

to accumulate the distribution of fitness values over time, thus using not only

the present but also past values to assess the state of the search. Importantly,

they do not use the fitness value for selection, but the frequency (measured

as entropy) with which it has occurred during search. Their fitness frequency

assignment (FFA) approach is able to autonomously oscillate back and forth

between exploration and exploitation. As searches in local optima will increas-

ingly produce similar fitness values, their entropy score will quickly degenerate

and drive the search away from that area, increasing exploration. In order to

do exploitation, it relies on the idea that bad solutions are found more readily

than the good ones, thereby using the frequency with which an objective value

is found as indicator of its interestingness. As the authors note, this might

not be the case for some problems, such as open mazes. Yet it makes use of
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one otherwise rather negative characteristic of evolutionary search methods:

The search operations of EAs are random mutations and therefore most of

the time destructive and result in degenerate behaviors, Instead of following a

fitness trend, irrespective of the range of improvement, FFA’s archive allows

to follow a trend in the frequency landscape. This approach does not assume

that a better objective value lies closer to the global optimum, which makes it

suitable to address deceptive problems.

Summarizing, entropy can capture diversity with respect to an individual’s

interaction with the environment, the diversity in the present and past popu-

lation and the progress of the search as a whole. The next section will present

how I use it to model different search drives and the experimental setup I use

to evaluate their effectiveness.

3. Methodology

To evaluate the success of the different objectives I use a maze-navigation do-

main and a bipedal walking robot. Mazes make it easy to design problems with

varying degrees of deception, which is why they are a widely used benchmark

task for behavioral diversity methods [1, 91, 45, 49, 5]. Evolving controllers for

walking robots is a popular problem within EC [35, 87, 9, 91] and is consid-

ered to be much more difficult than the maze navigation problem due to the

need for balance and the nonlinear dynamics of walking. Because of its higher

computational needs, I will not be able to test all combinations of objectives in

both domains. Instead, I use the maze domain to investigate the interactions

of the proposed objectives and try to reproduce the most interesting findings

in the biped domain.

3.1. The Mazeworld Setup

Mazes can be seen as metaphors for real-world problems where the fitness

function is deceptive. In this analogy, the endpoint of the maze represents

the solution to the problem and the walls around and within the maze are

constraints. As these are not known a-priori, fitness in maze domains is typi-
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cally measured as the bird’s eye distance from the final position of the robot

to the goal. Thus, the fitness function returns the euclidean distance between

the final position of the robot and the goal. As this disregards the walls of

the maze, which in the metaphor used above represent the structure of the

problem, this often leads the search into a dead-end, the abstractions of local

optima in the search space. The more distance the robot needs to travel in

directions away from the goal, the more deceptive the problem is. The mazes

used in this work (see figure 3.1) were initially proposed in [103], adopted for

novelty search by Lehman & Stanley [1] and subsequently used in other works

on behavioral diversity [45, 49, 91]. The code for the maze-experiments was

taken from Joel Lehman’s publicly available GitHub-profile [104]. My adapta-

tions can be found at [105].

In order to demonstrate the objectives’ capacity to escape local optima, the

mazes increase in their degree of deception: The medium one requires a weav-

ing motion and the harder of the two mazes has a very pronounced local optima

in the lower left corner right near the start. With the sides of the mazes being

300 units long, the mazes are considered solved if the robot is within 5 units

of the goal.

Figure 3.1.: Two of the mazes used in this work. The circle marks the starting point
of the robot and x marks the goal. The medium maze (left) requires a weaving
motion. The hard maze (right) has a very deceptive dead-end close to the goal in
the lower left corner.

The robot is equipped with six sensors that detect the distance to the walls

and four pie-slice radar sensors that indicate in which quadrant of the robot is

the direction to the goal. Figure 3.2 shows the arrangement of the sensors. The

ANN that controls the robot receives those sensor values as inputs and maps

them to two output units, controlling the robots angular and linear speed.

In the initial ANNs all sensor neurons are fully connected to the output

units. Over the course of generations the topology of the hidden layers is

evolved with the NEAT method [106], tuning the weights and adding hidden
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Figure 3.2.: Left: Each robot is equipped with 6 rangefinder and 4 pie-slice sensors.
The readings of those sensors are the input to the neural network. Right: The inner
topology of the neural network is evolved throughout the generations. The output
of the ANN are two values controlling the linear speed and angular velocity of the
robot.(Images with courtesy of Joel Lehman, taken from [1])

nodes and connections as the result of mutations. Each individual is simulated

for 400 timesteps.

The task-agnostic objectives, novelty, curiosity and evolvability, are defined

upon the behavior of the robot. Although different domain-agnostic ways to

characterize behavior have been proposed and successfully applied to mea-

sure novelty [22] and curiosity [45], I will stick to the more domain-specific

methodology used on novelty search’s introduction [1]. Therefore, the behav-

ior is characterized in a straightforward manner by the x,y-location of the

robot at the end of the simulation.

The following section will describe how the behaviors are used by the selec-

tion criteria derived in this work and the control objectives which are used to

measure the success of the controllers.

3.2. Entropy Objectives

This section presents the application of entropy to measure novelty, curiosity

and evolvability. Therefore I will first introduce the original measures which

inspired their use in this work, followed by their adaptations with entropy.

3.2.1. Novelty as Rarity

In the original work [1], an individual r’s novelty is its sparsity in behavior

space, computed as the average distance to its k nearest neighbors µ:
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Novr =
1

k

k∑
i

dist(r, µi) (3.1)

according to a distance metric dist(· , · ). With the behavior characterized

by the final location xr in the maze, distance is measured with the euclidean

metric. The nearest neighbors are taken with respect to the current population

and an archive of past behaviors. The archive is maintained to remember where

the search has already been and discourage backtracking. In the initial work,

the archive consisted of individuals whose novelty was above a certain threshold

when discovered. The threshold would be adjusted dynamically throughout

the trial in order to consistently add individuals to the archive. With that

approach, the newly added behaviors would effectively act as repellent on the

direction of the search, even though they actually indicate a region worthy

of further exploration. In later work, [107] Lehman suggested to randomly

sample λ individuals instead of taking the most novel ones. That way the

archive would be more representative of where the search had been.

Novelty with Entropy

In order to use entropy, the search history must be represented as a distribu-

tion. This is done by discretizing all the Nhis behaviors that have occurred

during the search into a histogram. Novel behaviors, being in sparse regions

of the behavior space, fall into bins of the histogram that are little or not pop-

ulated. This histogram, which I will refer to as the archive-grid, will serve as

the equivalent of the archive in novelty search and represent where the search

has already been. The diversity of the search history can then be computed

as the entropy Hhis of that grid:

Hhis =

Ncells∑
i

p ∗ log(p) (3.2)

with p = |gi|
Nhis

being the fraction of individuals in grid cell gi of the archive grid

and Ncells being the number of non-empty cells of the histogram.

An individual r’s contribution Hhisr to that sum can be attained by splitting

the entropy value of one grid cell among all the individuals in that cell:
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Rarr =Hhisr =
1

|gi|
∗ p ∗ log(p) (3.3)

=
1

Nhis

∗ log(p) (3.4)

Noteworthy, the rarity value is updated each generation, possibly changing as

the cell of the individual becomes more populated. If the cell becomes more

populated, its rarity decreases. Yet if it does not, the growing number of total

individuals in the archive will make it even rarer, indicating that the underly-

ing behavior might be worth of further exploitation.

This adaptation has two important ramifications:

1. Other than in the original adaptation, every individual’s behavior is rep-

resented in the archive. This can be done because the complexity of

comparing an individual to the archive stays the same, irrespective of

how many individuals it holds.

2. The grid method is unable to compute exact distances between indi-

viduals from different cells. Consequently, it can not make a difference

between an individual that is in a sparse neighborhood far away from

the others and one that is is in a sparse neighborhood close to the rest.

Given these two differences to the original algorithm, I deem it more appropri-

ate to name that quantity rarity. The implicit trade-off made by using entropy

is that rarity can incorporate the entire search, but only with a certain reso-

lution, whereas novelty search needs to sample the history of behaviors, but

can compute exact distances. This allows novelty to differentiate between the

aforementioned two individuals: As the first behavior is more farther away

from the rest it will be assigned a higher reward by novelty. For rarity, the

sparsity of the region is all that counts and the two behaviors will be equally

good.

For the maze-navigation task, where the behavioral characterization is the end-

position of the robot, the archive grid will thus be two-dimensional. Because

the maze is bounded, the maximum and minimum coordinates are known in

advance. The total number of cells in the archive grid is the squared number

of bins used to discretize the x- and y-coordinate of the robot. When that
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number is Nbin, then equation 3.2 becomes:

Hhis =

Nbin∑
i

Nbin∑
j

p ∗ log(p) (3.5)

and p =
|gi,j |
Nhis

being the fraction of individuals in grid cell gi,j of the archive grid.

3.2.2. Curiosity as Path Entropy

Curiosity refers to the diversity of the path an individual traverses during its

lifetime. For the curiosity instinct as implemented in [45], this path is described

by the sensorimotor-stream of the robot. It is then discretized into states with

a clustering algorithm and each state is assigned a probability according to how

often the robot has been in that state during its trajectory. The entropy of that

distribution of probabilities is then interpreted as the individual’s curiosity.

The sensorimotor stream was used to have a domain-independent drive that

could be computed on board of the robot. As this work is interested more

in the effect of defining entropy with respect to different frames of reference

the behavioral characterization only needs to be adjusted to include temporal

information, but should otherwise be defined similar to rarity. Therefore, the

robot’s x,y-location is mapped into a histogram at each timestep t of the

simulation, capturing the robot’s trajectory in a grid. At the end of the run,

after Nsim timesteps, curiosity is measured as the sum over the entropy of the

grid cells:

Cur =

Nbin∑
i

Nbin∑
j

p ∗ log(p) (3.6)

with p =
|ni,j |
Nsim

and |ni,j| being the number of times the individual has been in

the respective grid cell.

Therefore curiosity encourages the robot to travel long paths, thus visiting

as many different states as possible and sharing its time equally among the

states visited.

3.2.3. Evolvability as Grid Entropy

As described in section 2.3.1, evolvability can be interpreted in two different

ways: As the amount of variation an individual can produce or as an indi-
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vidual’s capacity to produce adaptive variation. The former interpretation is

more lax as it only requires the offspring to be phenotypically distinct, whereas

the latter requires the offspring to be fitter than their parents. Although very

practical, the second definition suffers from the obvious drawback that the

fitness function can be misleading. In that case it will render that approach

useless for the more complex problems on which evolvability is needed. As

the first interpretation does not suffer from that and is in its spirit closer to

the idea of this thesis to find a goal-independent utility value I first tried to

find a heuristic for this kind of evolvability. Also, the work on evolvability

search [91] has already shown that this kind of evolvability is already favorable

for generalization and diversity. Therefore, this work and other that measured

evolvability in the maze domain [1, 48] approximate evolvability by the number

of distinctly different offspring an individual can produce. Therefore a great

number of offspring is spawned and the final positions of the candidate and its

mutated children in the maze are mapped into a histogram. The evolvability

of the individual then corresponded to the number of grid cells that held at

least one individual.

Consequently, the adaptation with entropy is straightforward; evolvability

is measured as the entropy of that histogram:

Evo =

Nbin∑
i

Nbin∑
j

p ∗ log(p) (3.7)

with p =
|gi,j |

koff+1
being the fraction of individuals in grid cell gi,j and Ngrid being

the total number of children generated.

The difference between using the number of non-empty cells and using the

entropy is that entropy also considers how equally the individuals are spread

out. Although this could favor those individuals that are more constantly

producing diversity, it could also be irrelevant given that most mutations are

deleterious and thus the resultant behavior is a product of mere chance.

The two interpretations will only be compared by their degree of correlation,

as using them to drive the search is computationally too costly.

3.3. Control-Objectives

This section presents the control objectives used to test the effectiveness of

the objectives. Next to the typical fitness function, the control objectives are

behavioral diversity[17], which is another state-of-the-art method, and novelty,

which is used to see the effect of using entropy.
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3.3.1. Novelty

As explained above, the original work by Lehman [1] computes novelty as an

individuals r’s average distance to its k nearest neighbors µ among the current

population and an archive (see equation 3.1).

Similar to this work, Lehman also uses the robot’s end-position as character-

ization of its behavior and the euclidean metric for dist(· , · ). Other parameters

for novelty are the number of neighbors k and the method according to which

new individuals are added to the archive. The initial work and following adap-

tations [9, 63, 62] have used k = 15 and a comprehensive study about how to

devise effective novelty search [61] confirmed it to be most performant across

a variety of mazes. Gomes et al [61] also found that random sampling was

indeed superior and that λ = 6 was a good value over a range of different

mazes.

3.3.2. Behavioral Diversity

Another diversity measure in the behavioral domain has been proposed by

Mouriet and Doncieux [44, 5]. Akin to novelty, it measures an individual’s

distance to other members of the population. It differs from novelty search in

that it computes the mean distance to all members, instead of just its nearest

neighbors and in that it does not use an archive. Instead it is used together

with a fitness objective that is optimized in parallel by a MOEA, often NSGA-

II [108].

Maximize

FitnessDivr =
∑Npop

i dist(xr, xi)
(3.8)

Similar to novelty and rarity, the BC will be the end-position of the robot

and distance will be measured with the euclidean metric. Fitness is measured

as distance between the end-position and the goal.

3.4. Heuristics for Evolvability

This section presents the approaches taken to approximate evolvability without

doing extra simulations, instead using the lineage and the offspring of the

individuals that are discarded during search. As all attempts at doing so were

unsuccessful, I will instead describe the different ways it was tried and the

underlying intuitions upon which they were based.
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3.4.1. Estimating Phenotypic Variation from Past

Behavior

As the capacity to produce a diversity of differently behaving offspring had

already been proven to be valuable in the maze domain [1, 91], I first try

to find a heuristic that would predict evolvability according to that first of

its two interpretations. In order to avoid the many extra individuals that

usually are created to approximate this exactly, I instead use the ancestors

of the individual. Here, the assumption is that the lineage of an evolvable

individual is very diverse. Individuals that are evolvable and have covered

a wide range of behaviors in the past, are assumed to also be evolvable in

the future. Consequently, the diversity of an individual’s lineage could be

used to approximate the diversity of its offspring. In order to test this, the

individuals save their behaviors in a lineage-grid, which they pass on to their

children. By that, each individual knows about the behaviors of their parents

and grandparents. If the assumption is true, it should be possible to recognize

evolvable lineages by the high diversity of their lineage-grids. Individuals that

stem from a lineage of diverse behaviors should be able to spread their offspring

over a wide range of grid cells, thus scoring high on evolvability. A more

detailed account of how the transmitted behavior is characterized and the

diversity of the lineage-grid is measured is given in the experiment section 4.6.1.

Noteworthy, this reasoning requires that the selection procedure, which ef-

fectively fills the lineage-grid, rewards novelty. If there were only a fitness

objective, diverse offspring would not register in the lineage-grid unless they

also outperformed all other individuals in terms of fitness. Therefore the evo-

lution will start by only selecting for novelty, so that the lineages consist of

individuals that, at their lifetime, were contributing to the search. After a cer-

tain number of generations, when the lineages are meaningful, the heuristics

will be optimized parallely to novelty as a second objective.

To gauge their effect on the search, the heuristics will then be turned on and

off at regular intervals, at the beginning and end of which evolvability will be

measured.

Support for this approach is given by previous findings [1, 87] that indicate

that selecting individuals for novel behavior also promotes evolvability. If

the stepping stones discovered by novelty search confer evolvability to the

search process, as is suspected by Doncieux & Mouriet in [26], one can expect

evolvable individuals to be frequently selected for discovering new behaviors

or niches [78] and in turn have a diverse lineage.
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As this attempt to approximate the diversity of an individuals offspring

failed, I then tried to approximate evolvability as an individual’s success of

producing children that are likely to be selected.

3.4.2. Estimating Adaptive Variation with Feedback

from Children

In its second interpretation [75] evolvability refers to an individuals capacity to

produce adaptive variation. Works from EC [77] that adopt that view require

individuals to produce children that are fitter than themselves, so that they

contribute to the progress of reaching the objective. Although very practical,

that suffers from the obvious drawback that the fitness function can be mis-

leading, which renders that approach useless for the more complex problems

on which evolvability is needed.

Therefore, I suggest to replace the fitness objective with a diversity objec-

tive. Instead of fitness, children are measured on whether or not they perform

high on a diversity objective. To avoid having to produce many extra offspring

that are not used for the search, it was implemented that the actual children

provide feedback to their parents whether or not they have been selected to

be part of the next generation. The amount of positive and negative feedback

an individual got was then used to approximate its contribution to the search

progress.

As this feedback mechanism only gives credit in retrospect, another diver-

sity objective needs to be used to select between the newly created children.

Furthermore, the algorithm must keep a gene pool, which is updated after

each generation to hold the most successful individuals produced by the en-

tire search. This approach, also referred to as elitism, is common in different

MOEAs [108, 109, 110]. Keeping the most successful solutions as parents in-

stead of discarding them significantly increases convergence [111], as only a

small fraction of each generation actually represents an improvement.

So whenever a child is newly adopted into the gene pool, its parents, if

also still present, are rewarded. Analogously, parents are punished when they

are disproportionately bad at producing successful children. For a MOEA,

‘successful’ typically means the individual represents a new trade-off between

the target objectives, so that it gets taken up into the archive (see section 3.5.1

for a more detailed explanation of how this trade-off is measured with pareto-

dominance). Therefore, each generation the average rate of newly adopted

individuals into the gene pool is computed and parents that have spawned
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children are compared to that number. For the experiments to come, this

ability to produce good children will be referred to as viability and abbreviated

with (VIAB).

An individual r’s viability at iteration t is computed as:

V IABr,t = 1 ∗ childrenr,elitet − progresst ∗ childrenr,spawnedt−1 (3.9)

with progresst being the percentage of children adopted into the gene pool

at iteration t, childrenspawnedt−1 the number of children individual r spawned

in the iteration before and childrenelitet referring to the number of its children

that have been taken into the gene pool. Thus, the first part of the sum is

the actual number of r’s children that have been adopted and the second part

is the expected number, calculated by multiplying the number of its offspring

with the average adoption rate (progress).

Consequently, individuals whose children can not contribute anymore to the

progress of the population, will have their viability decreased, whereas those

whose children are adopted is increased. Thus, viability is a feedback on the

efficiency of the exploitation mechanism: In the case of the maze, an example

for the former would be an individual that by lucky circumstances very quickly

evolved a structure that walks to a unusually rare point in it, but is so fragile

that all its children are useless. Without the viability objective, it would be

selected repeatedly for reproduction until the population has caught up to it.

Until then, it will be selected again and again, as its behavior is very rare. Yet

with viability, there is a criteria that reflects its missing contribution to the

overall progress of the search.

The obvious drawback of this method is that only few individuals are used and

the feedback works only in retrospect. Yet as progress on difficult objectives

is typically slow (in the maze-domains of this work, only about 2% of each

generation get adopted into the gene pool), the individuals might stay long

enough in the gene pool for this heuristic to become accurate enough to support

the search.

3.5. Evolutionary Setup

This section present the choice of the MOEA used to optimize two or more

objectives in parallel and the experimental parameters which are assumed to

have no influence on the functionality of the diversity-objectives, such as the
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choice of encoding and the method of assembling the child generation from the

gene pool.

3.5.1. Ranking with NSGA-II

The MOEA used in this work is NSGA-II [108]. It is computationally fast and

widely used in ER, for example to combine novelty with other objectives [61,

60, 9], to optimize behavioral diversity together with fitness [17] and in a

study that compared novelty and behavioral diversity with different behavior

characterizations and metrics [5].

Like most MOEAs, it relies on the concept of pareto-dominance to compare

the quality of different solutions. A candidate x̃ is considered to dominate a

candidate x if

1. x̃ is not worse than x in all objectives.

2. x̃ is strictly better than x in at least one objective.

Individuals that are not dominated by others in the population thus represent

a unique trade-off between the objectives to be optimized.

It is important to note that pareto-dominance does not imply an ordering on

all candidate solutions. Candidates can have very differing values for the single

objectives, yet no one dominates the other. When the number of objectives is

very high, then the proportion of non-dominated solutions increases. That is

also why MOEAs with more than four objectives are considered many-objective

optimization methods [59] and rely on different concepts. But also with few

objectives the number of non-dominated candidates can increase quickly and

that is why MOEAs typically use a crowding mechanism to determine how

densely the region a non-dominated solution resides in is populated. Figure 3.3

illustrates the optimal line along which the solutions can spread, the pareto-

front, and two populations that approximate it in a desirable and undesirable

way.

To preserve a diverse set of trade-offs between the different objectives and

to make sure that the good solutions are not lost, NSGA-II maintains an

external archive of a fixed size. This archive, also referred to as gene pool or

elite, holds the best non-dominated solutions found by the entire search. Every

iteration of the search a new generation of children is generated from it. After

the children have been evaluated, the archive is assembled anew by selecting

from the combined population of children and parents, preserving a diversity

of trade-offs. To assert that diversity, all solutions are ordered according to
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Figure 3.3.: Two objectives f1 and f2 are optimized simultaneously. The points
represent possible solutions along the pareto-front. The blue points that lie on the
front are non-dominated, whereas the white ones farther to the upper right are
dominated. (a) presents a group of solutions with little diversity - the points lie
closely together around the knee of the front. The solutions in (b) maintain a higher
diversity and are a better representation of the trade-offs between the two objectives.

a specialized ranking system. To compare the solutions, each is assigned two

values: (i) a non-domination rank and (ii) a crowding distance assignment.

The first is determined by how many solutions need to be removed from the

population in order for it to be non-dominated. The second measures the

average distance for each objective to its nearest neighbor in both directions.

Figure 3.4 shows that this is the average side length of the cuboid spanned by

the nearest neighbors in the front. These two properties then allow to define a

strict order on all solutions: When comparing two solutions one is considered

superior if it has a lower non-domination-rank or, in case those are equal, if

it has a higher crowding distance. The archive of the next generation then

consists of the top half of the combined parent and child generation, sorted

according to that order.

NSGA-II can also be run with just one objective. Then it acts as an normal

generational elitist EA. As NSGA-II only dictates an ordering on the solutions,

the choice of how to create the child generation from the parent generation is

in the hand of the experimenter. This includes choices about the selection and

mutation mechanisms that will be described in the next section

3.5.2. Exploitation by Tournament Selection

Whereas the objectives so far have been mainly considering how to effectively

increase the amount of exploration, selection and mutation will be used to
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Figure 3.4.: The crowding distance of the candidate solution i is computed as the
average side length of the cuboid.

ensure exploitation.

Exploitation by selection is done by creating more offspring from the high

scoring individuals. By representing them more in the next generation, the

potential benefits that can be gained from finetuning their behaviors are more

likely to be discovered. A typical selection approach for generational EAs,

such as NSGA-II, is to do x-size tournament selection, as described in [112].

Therefore x individuals are randomly sampled from the population and the

fittest, or in the case of NSGA-II the one ranked highest, is added to the next

population. This is repeated until the next generation is filled. The size of

the population and the size of the tournament both influence the degree of

exploitation. Small populations and bigger values of x increase exploitation:

The bigger the tournament size, the less likely it is for unfitter individuals to

end up in a tournament where they come out as winners. And the smaller the

population the less tournaments provide that opportunity. In this work I use

a tournament size of 4 and a population size of 100. The assumption is that

the degree of exploitation will not distort the results as long as it is not too

low or too high.

For mutation to contribute to exploitation, it is important that the mutated

genome changes the behavior only by a small margin. These variations still

occur randomly, but the more slightly different variations of that behavior

are tested, the more likely it is fine-tuned. I don’t use crossover operations,

as those often contribute more to exploration when they pair two genetically

very different individuals.
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NEAT-parameter Value

Probability of adding a new node 0.03
Probability of adding a new connection 0.05
Trait mutation power 1

Table 3.1.: Important parameters for the NEAT algorithm. Weight mutation power
affects how strongly the connection-weights are changed.

The next section will describe the NEAT method, which is used to encode

the ANNs on a genome and mutate them when creating offspring.

3.5.3. Encoding with NEAT

Encoding methods in ER can either be direct [113] or generative [66, 114, 25].

The first directly maps genes to phenotypic traits, whereas the latter encom-

pass a one-to-many mapping. Thus generative encodings facilitate the discov-

ery of regular or modular phenotypic patterns, for example by also evolving

the type of activation function used in the neurons (linear, gaussian or sine-

functions). For the maze-domain, the ANNs are encoded using the generative

NEAT method [106], which is widely applied [1, 54, 91] and well understood.

NEAT and its adaptations [66] are popular neuroevolution methods, as they

provide a good way to encode ANNs, align genomes to do crossover and it-

eratively complexify the topology of the evolved networks. The last point is

especially desirable as it favors the discovery of simple solutions before more

complex ones. This effectively limits the size of the search space throughout

the entire search. Comparative studies [61] have shown that novelty search and

behavioral diversity work about equally well when using the NEAT-encoding

or other alternatives. As those objectives and the ones newly proposed in this

work are defined in the behavioral space, I suppose that they are largely in-

dependent from the neuroevolutionary algorithm that is used. The decisive

parameters for NEAT are shown in table 3.1. The other parameters are the

default parameters taken from the NEAT user page [2] and are listed in the

appendix A.1.
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4. Experiments & Results

In order to show the usefulness of the entropic objectives I use them to solve

two maze-navigation tasks. The evaluation criteria for the maze performance

are the convergence rate, showing how consistent the objectives find a so-

lution, and the average number of generations until the solution was found.

The consistency is the primary measure for success because solving speed is

only important when the maze is solved consistently. After analyzing the per-

formance of curiosity and rarity, the following sections will address potential

concerns and questions raised by the results. The following section shows the

experiments undertaken to investigate the heuristics for evolvability. Finally,

the most interesting results are verified in the biped domain.

4.1. Maze Performances

All experiments in this and the following section are run with a population

of 100 for a maximum of 1000 generations. Unless specified differently, the

resolution of the grid used to discretize the robot’s end positions was set to

15, a choice that will be justified by the experiments in the section 4.3.

First, curiosity and rarity are used to drive the search in two maze navigation

tasks. The mazes (see Figure 3.1) increase in their degree of deception to

illustrate the objectives capacity to escape local optima. Both objectives and

their combination are compared to the traditional fitness objective, another

state-of-the-art diversity method that combines fitness and behavioral diversity

(FIT+DIV) [17] and novelty search. The results for both mazes are shown in

the tables 4.1 and 4.2.

The main result is that the methods that increase diversity with respect

to past and present search results, rarity and novelty, are most successful.

For both mazes, they are most consistent as they reach the goal area in 30

out of 30 trials. Moreover, both objectives are significantly faster than the

rest (p < 0.05 according to a two-tailed Mann-Whitney-U-test). Averaged

over both mazes, rarity needs about 132 generations (SD = 95) to find a

solution and novelty 154 generations (SD = 235), whereas the next method,

fitness with behavioral diversity (FIT/DIV), needs about twice as long (467,

SD = 187). The significance values for the other speed differences can be seen

in the appendix B.2 and B.1.

Curiosity solves both mazes in about half of the trials. In the medium
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maze, that is the worst convergence rate of all objectives. In the hard maze,

curiosity is only better than fitness, which does not converge at all. On average,

curiosity needs 397 generations to find a solution (SD = 292). When combined

with one another, rarity and curiosity show no unexpected interaction. The

performance of it is worse than rarity and better than curiosity.

Fitness performed well in the medium maze (70% convergence), but never

found a solution in the hard maze because the population got stuck in the local

optimum close to the goal (see Figure 4.2). When supplemented with a diver-

sity measure, the performance improved but the hard maze was still solved less

frequently (57% vs 70%) and slower (448 vs. 325 generations). Remarkably,

this dynamic is reversed for the diversity objectives, i.e. the harder maze is

solved faster than the medium maze for curiosity, novelty and rarity, showing

that diversity as sole objective is insusceptible to deceptive local optima.

Objectives Convergence Rate Solving Time SD N

RAR 1 157.77 140.65 30
NOV 1 193.8 155.7 30
RAR/CUR 0.83 444.68 266.97 30
FIT 0.73 333.09 284.67 30
FIT/DIV 0.7 325.05 173.85 30
CUR 0.47 471.07 322 30

Table 4.1.: Medium maze: Convergence rate and solving speed for rarity, curiosity
and the control objectives. The maximum number of generations was 1000 and the
population size 100.

Objectives Convergence Rate Solving Time SD N

RAR 1 106.87 48.54 30
NOV 1 114.8 48.67 30
RAR/CUR 0.97 210.1 202.89 30
FIT/DIV 0.57 447.24 284.41 30
CUR 0.53 324 262.05 30
FIT 0 0 0 30

Table 4.2.: Hard maze: Convergence rate and solving speed for rarity, curiosity and
the control objectives. The maximum number of generations was 1000 and the
population size 100.

43



Chapter 4. Experiments & Results

4.2. Typical Behavior

With fitness guided search, the majority of the population ends up in the local

optima closest to the goal (see Figure 4.2). When fitness is supplemented

with the behavioral diversity objective, the population splits in two: One

half converges in the local optimum and the other in the corner of the maze

opposite to it (Figure 4.3). This is because the behavioral diversity is measured

as average distance to the entire population and is thus affected by the part

of the population stuck in the local optimum. Individuals on right path to the

goal need to traverse an area in the middle of the maze, which passes close

to the local optimum. Consequently, the average distance to the population

on that path is very low so that neither fitness nor diversity will encourage

exploring it. By including the entire population in the diversity score, this

search method is still handicapped by deceptive local optima.

Typical runs for the entropy-based objectives rarity and curiosity are shown

in Figure 4.1, Rarity exhibits an even distribution across the maze, progressing

through the maze as the search goes on. When maximizing curiosity the robots

tend to stick close to the walls and in wide areas, possibly because those might

facilitate traveling long paths.
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Curiosity

Rarity

Figure 4.1.: Typical runs for the diversity-based objectives curiosity (top) and rarity
(bottom). For each generation, the ten highest scoring individuals on the respective
objective are plotted. The color of the dot indicates the generation, from dark red
(first generations) until white (generation 200).
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Figure 4.2.: Fitness

Figure 4.3.: Fitness + behavioral diversity

Figure 4.4.: Typical runs for the fitness- (top) and fitness with behavioral diversity
(bottom) guided search. For each generation, the ten highest scoring individuals on
the respective objective are plotted. The color of the dot indicates the generation,
from dark red (first generation) until white (generation 200). Fitness was measured
as the euclidean distance between the robot’s end location and the goal.

All experiments in this and the previous section were run with a population

of 100 for a maximum of 1000 generations. The resolution of the grid used to

discretize the robot’s end positions was set to 15, a choice that will be justified

by the experiments in the next section.

Overall, these experiments affirm that (i) ensuring diversity with respect to

an individuals immediate experience (curiosity) or with respect to past and

present experiences (novelty and rarity) can efficiently solve deceptive mazes.

And (ii), modeling novelty with entropy was possible without a decrease in

performance.
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The next two sections will present experiments that address possible con-

cerns and questions raised by the formalization of rarity and curiosity.

4.3. Varying the Discretization of the

Behavior Space

Both curiosity and rarity rely on a grid to discretize the robot’s behavior. As

the resolution of the archive grid decides which locations are considered to be

equivalent and which can be differentiated, it has the potential to strongly

affect the success of the objectives rarity and curiosity. Big (or small) grid

sizes are equivalent of a grid with many (few) cells, leading to a many (few)

behaviors being collapsed into the same point in the search space. Results for

using various grid sizes with curiosity, rarity and their combination are shown

in Figure 4.5.

Curiosity is sensitive to size of the grid. It performs best at low grid-sizes,

which require individuals to travel longer distances in order to score high on

curiosity. As the goal is at the far end of the maze, this aligns curiosity and

solving the maze, as both require long distances. At higher grid sizes, it is easier

to traverse different states without leaving the starting area of the maze, so

that finding the solution takes more time and occurs less often. But as too

low resolutions allow only a very crude distinction between the paths taken

through the maze, it remains questionable whether curiosity is useful for more

sophisticated problem domains. With that possible shortcoming and too high

resolutions decreasing convergence and speed, the choice of the grid-parameter

for curiosity is not trivial.

Contrary to that, rarity’s performance is robust to high or low grid sizes, also

performing slightly faster for the lower sizes. For very low discretizations, the

convergence rate decreases a bit, probably because a smaller grid size drives

the population towards new areas at the risk of overlooking a solution if it

lies in a already densely populated grid. If, for example, the maze contained

a bottleneck that would by accident be located in the corner of a large and

densely sampled grid cell, then the appearance of an individual able to pass

through the bottleneck becomes less likely, as the variants that nearly pass

through would be punished for ending up in an already populated grid. A

higher resolution collapses less behaviors into the same cell and thus decreases

the chance of confounding behaviors which should better be differentiated.

Hence, the grid cells become very small and individuals are more likely to
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register as rare. In that case, it takes longer to progress to new areas of the

maze, but ultimately those areas will be discovered too. As a general rule,

rarity is very robust to the grid size, which when in doubt can be used to trade

of speed for convergence rate.

Looking beyond the application of rarity to this domain, discretizing the

behavior space has an important drawback when the number of behavioral di-

mensions increases: When discretizing a behavior space with an equal amount

of bins per dimension, the total number of distinct behaviors grows expo-

nentially with the number of dimensions used. Consequently, the distinction

between behaviors becomes so fine-grained, that almost all behaviors become

rare. The next section considers this effect in more detail and presents two

ways to address it.

Figure 4.5.: Performance of the rarity and curiosity objective, affected by grid dis-
cretization: The upper graph shows the convergence rate, indicating how regularly
a solution is found. The lower graph shows how fast the first solution was found. All
combinations of objectives are relatively robust to the choice of the grid size param-
eter. The results in these graphs are averaged over the two mazes, with each grid
discretization being run 30 times per maze. The maximum number of generations
was set to 1000.
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4.4. Lengthening the Behavioral

Characterization

As rarity requires the degenerate behaviors to be sampled more often, the total

number of behaviors it discriminates is a possible concern. With the robot’s

end-position as behavioral characterization, the number of all possibly existing

behaviors is only the squared number of bins used to discretize one dimension,

and therefore the archive can be filled quickly. Yet it is easy to imagine sit-

uations where a two-dimensional description of behavior is not sufficient or

convenient to the experimenter. An example illustrates the implications of

having the archive’s size depend on the dimensionality of the behavior: De-

pending on the number of dimensions d used to characterize an individual’s

behavior and the number of bins k used to discretize them, the archive needs

to keep track of the frequencies of kd different behaviors. If, for example,

the behavioral characterization had d = 10 dimensions, each discretized with

k = 10, there would be 10 billion different behaviors. In order for rarity to

recognize the behaviors in one cell as being degenerate, it requires the cell to

be more populated than the others. But the more possibly behaviors exist

in the archive, the longer this can take. With evaluations typically being the

computationally most demanding parts of EAs, it is therefore interesting to

consider ways in which the size of the archive can be limited.

As the combinatorial explosion occurs as all these d behavioral dimensions

are discretized with respect to each other, a simple approach would be to dis-

cretize each dimension by itself, thus keeping d archives with k cells instead of

one archive with kd cells.

A behavior is then discretized into d cells, each of which with a different rarity-

score. For each dimension di, the individual r is credited with the dimensional

rarity Rardi . Analogously to equation 3.3, Rardi is computed as the individ-

ual’s contribution to the rarity of its cell gr,i:

Rardi = − 1

Nhis

∗ log(p) (4.1)

with p =
|gr,i|
Nhis

being the fraction of individuals throughout the search whose

i-th behavioral dimension got discretized into that grid cell gr,i. The total

rarity of an robot is the sum over all d dimensional rarities:

Rarnaive =
d∑

i=0

Rardi (4.2)
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As the approach naively neglects the possible relations between subsequent

dimensions (the x- and y-position of the same location), it will be referred to

as naive rarity (naiveRAR).

To simulate a higher dimensional behavior without the overhead of switch-

ing the domain, the position of the robot is sampled at regular intervals dur-

ing its run through the maze. Therefore d/2 samples of a robot r’s loca-

tion are taken at timesteps t0, t1, ..., td and concatenated into a vector br =

{xt0 , yt0 , xt1 , yt1 , ...xtd/2 , ytd/2}, resulting in a behavioral characterization of length

d.

This also allows to investigate a more principled approach to assemble the

different archives. Using the relation inherent to a time-series of samples, the

second approach would be to only relate dimensions that are sampled at the

same timestep, thus using d/2 archives with k2 cells. The corresponding total

score would then be

Rart =
d∑

i=0

Rarti (4.3)

=
d∑

i=0

− 1

Nhis

∗ log(p) (4.4)

with p =
|gr,i|
Nhis

being the fraction of individuals throughout all the history of

the search whose location at timestep i also got discretized into the grid cell

gr,i of archive i.

These two approaches differ in the amount of prior knowledge about the

dimension the experimenter chose to include. As knowing beforehand which

dimensions benefit from being related is not trivial, the first approach simply

relates none of them. The other approach follows the simple intuition of using

the position on the robot’s path. As this makes uses of the temporal ordering

of the dimensions, it will be referred to as temporal rarity (tRAR).

Both approaches and the initial rarity (RAR), which does relate all dimen-

sions were run 10 times in each maze with behavioral characterizations up to

400 dimensions. For the latter, the robot’s location was sampled every sec-

ond step of the simulation. Convergence rate and solving speed are shown in

Figure 4.6).

tRAR and naiveRAR solve the mazes consistently (> 95% of the trials).

Surprisingly, naiveRAR converged as good as tRAR. The only advantage of

tRAR is that it is a bit faster, yet not by a large margin. The unadjusted

RAR-objective, which relates all dimensions, quickly degrades in performance.
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Moreover, the space requirements for RAR exceeded the memory capacities

of the computer when tracking behaviors with more than 40 dimensions. Yet

with the relaxed dependence assumptions, the dimension of behavior does not

seem to have an influence on the performance of rarity.

To confirm that the performance of the adjusted rarities was not specific

to one particular grid size, tRAR was run with various grid discretizations k.

Figure 4.7 shows that at all grid and sample sizes, tRAR successfully finds a

solution, only with a sleight increase in solution time for higher dimensional

BCs.

Figure 4.6.: Performance of the different rarity adaptations, affected by the length of
the behavioral description: The upper graph shows that both tRAR and naiveRAR
consistently find solutions, even for very high dimensional behavioral characteriza-
tions. The lower graph shows that tRAR, which other than naiveRAR relates the
x- and y-locations of the same timestep, finds solutions the fastest.
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Figure 4.7.: Performance of differently discretized tRarity-objectives, affected by the
length of the behavioral description: The upper graph shows that for all resolutions
of the individual sample positions (caused by different grid sizes used to discretize
the position in the maze) the maze is consistently solved, independent of the length
of the behavioral description. The lower graph shows that higher grid-resolutions
increase the time until the first solution is found.

The previous two sections have shown that rarity is robust to its hyperpa-

rameter of the grid discretization and can be adapted to behavioral descriptions

of greater length by using multiple archives.

4.5. Entropy as Selection Principle

The experiments in this section show that the success of the rarity-objective

is not only due to the expressiveness of the robot’s position as the behavioral

characterization but also to the use of entropy as selection principle, selecting

those individuals that are most likely to contribute to preserving diversity.

Therefore I adapt the entropy-selection to curiosity and fitness, by discretiz-

ing them and keeping track of the frequencies with which their values have

appeared throughout the search with an archive. Instead of selecting the in-

dividuals with the maximum values, rarity then selects those which have oc-

curred least often. For curiosity, this will be referred to as frequency-curiosity

(frCUR). For fitness, this alternative selection scheme will be referred to as

fitness frequency assignment (FFA), as suggested by Weise et al in [33], where

they apply it to a genetic programming problem. Both fitness and curiosity

have maximum and minimum values, so that the number of bins used to dis-
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Objectives Convergence Rate Solving Time SD N

FFA 0.68 425.47 212.81 20
frCUR 0.6 346.75 191.02 20
CUR 0.55 253.04 191.53 20
FIT 0.38 0 239.17 20

Table 4.3.: Results for replacing the maximum selection mechanism for a frequency
selection mechanism for fitness and curiosity. Results are averaged over two mazes.
For all discretizations, both to identify frequencies and to differentiate paths for
curiosity, the grid size was set to 10.

cretize the objective value was set to 10. The grid-size parameter for curiosity

was also set to 10. Each method was run 20 times in both mazes.

Table 4.3, shows the results averaged over both mazes. Results for the in-

dividual mazes are shown in the appendix B.4 and B.3. Fitness improves

remarkably when entropy is used as selection principle. In the medium maze,

performance increases from 75% to near perfect (90%). Importantly, fitness

frequency is less susceptible to local optima, shown by the improved conver-

gence in the hard maze (0% vs. 45%). For curiosity the performance stays

about the same. frCUR is slightly better in the medium maze, CUR in the

hard maze.

4.6. Searching a Heuristic for Evolvability

Two approaches to estimate evolvability are tried, resting on different ideas

how to avoid having to do extra simulations.

4.6.1. Estimating Evolvability from Past Behavior

The first interprets evolvability as the phenotypic variation of an individuals

offspring and tries to approximate it from the diversity of the lineage of the

individual. The underlying hypothesis of this approach is that in the presence

of selection for novelty, an evolvable individual will have a diverse lineage-

grid. Thus promoting diverse lineages should favor individuals who can spawn

diverse offspring.

To be able to validate that hypothesis, it is important to consider the dif-

ferent ways in which its key-elements are realized. These are (a) the way the

lineage-grid is composed (all ancestors or only the most recent ones) (b) the

way the diversity of it is measured (the spread of the lineage or just the number

of distinct behaviors in it) (c) the kind of behavior that is registered in the
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grid (only the end-position or the entire path)

Therefore, the following enumeration lists the different heuristics that are

used, each representing a different combination of the above factors.

1. Lineage-Grid-Entropy (LGE) is measuring the entropy over the lineage-

grid, assuming that evolvable individuals have shown a wide range of

different behaviors as in 3.5.

2. short-term LGE (shLGE) is measuring the entropy, but only over the

most recent parents, assuming that older ancestors are less important.

3. LG-Diversity (LGD) is measuring only the number of different behaviors

in the lineage-grid. Contrary to 1.) and 2.) this neglects how evenly the

ancestors are spread out. This should encourage development towards

unseen regions, rather than making sure the lineage is nicely distributed.

4. LGDr is measuring LGD over a reduced, coarser grid (lower resolution),

so that behaviors have to be farther apart to register as different. There-

fore the number of grid cells was reduced by a factor of 0.8, 0.6 and

0.4.

5. short term LGD (shLGD) is measuring the number of different behaviors,

but only among the most recent parents. Both shLGD and shLGE were

evaluated with lineage-lengths 100, 50 and 25 ancestors.

6. LGDnd is measuring the amount of different behaviors, normalized by

the length of the lineage.

7. The discovery instinct: Here the complete path of the individuals is

mapped into the lineage-grid (instead of using only their end-positions).

Then diversity is measured as the entropy of that grid.

Criteria LGD and LGE have a bias towards older lineages. That bias can

be neutralized by taking only the most recent history into account, assuming

that once an individual has an evolvable structure it can continuously produce

diverse behavior. (6) reverses that bias by dividing through the length of

the lineage, effectively favoring short lineages. Thus, lineages of length one are

assumed to be evolvable, whereas the longer the lineages need to maintain that

status by not tracking back to already exhibited parts of the grid. Criterion

(7), inspired by the discovery instinct from [45] saves the complete path an

individual takes through the maze, thus mapping the whole area covered by

that lineage. The intuition behind this is that evolvable lineages should be

able to cover larger ground.
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4.6.2. Results for Using Past Behavior

To see whether the criteria are useful proxies for evolvability, I measured evolv-

ability and its correlation with the proxy-criteria at regular intervals. As there

are no meaningful lineages at the beginning of evolution, the first iterations

are run only with the rarity objective. Later the heuristics are run together

with the rarity, as they require selection to favor the discovery of new behav-

iors. To single out the effect of the proxy, it was turned on and off in regular

intervals, at the beginning and end of which evolvability was measured. There-

fore 200 individuals were generated per individual and simulated in the maze.

Evolvability was then measured as the entropy of the end-locations of all off-

spring, as described in equation 3.7. In both mazes, this measure correlated

with r = 0.9 with the way evolvability was measured previously in works on

novelty search [1] and evolvability search [91], which only counted the number

of distinct behaviors in that grid instead of using its entropy.

The result is that all of the criteria are harmful for evolvability. This can

be seen in Figure 4.8, which shows how the evolvability of the individuals

develops 200 generations in the medium maze. It shows a zigzag-curve, going

down when the objective is selected for and going up when its selection is

disabled. Figure 4.8 also is representative for other interval-lengths and runs

in the hard maze, i.e. they always result in a zigzag-curve. On the upward

motion, the individuals are only selected for their rarity, which has a positive

effect on evolvability (correlation coefficient around r = 0.5). For comparison,

the sole effect of rarity on evolvability is also shown in the graph as a black

line.
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Figure 4.8.: Evolvability over time: The shaded areas mark generations when the
selection for the proxies was enabled. White background signifies that rarity (RAR
was the sole objective. There results are obtained by averaging over 2 trials in the
medium maze. Results in the hard maze were similar. The zig-zag pattern was
present also for different interval-lengths, for larger numbers of maximum genera-
tions (up to 1000) and for all values of grid-resolutions (LGDr) and lineage-lengths
(shLGD and shLGE).

Table 4.4 shows the correlation (pearson correlation coefficient) with evolv-

ability at the last generation. All r-values are negative, showing that it is

indeed harmful. A more detailed picture of how the objectives relate can be

seen in Figure 4.9,which shows a scatterplot of some of the objectives against

evolvability. Apart from the negative correlation, the scatterplot also reveals

that the individuals with high lineage-grid entropies score very low on fitness,

indicating that most of them have stayed in the initial area of the maze. In an

attempt to make the lineage more meaningful, I included even more ancestors

by also feeding back the position of the children into the lineage-grid of the

parents. The lineage-grid then represented the area covered by the behavior of

the ancestors plus all one step mutations of them that were spawned through-

out evolution. Yet even then, none of the introduced measures correlated with

evolvability or had a positive effect on it.
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Target-objective rEV O rRAR rFIT

LGE -0.15 -0.5 -0.46
LGEr -0.2 -0.34 -0.34
LGD -0.22 -0.4 -0.47
LGDr -0.27 -0.3 -0.36
LGDnd -0.23 -0.34 -0.46
shLGDnd -0.38 -0.47 -0.55
shLGD -0.38 -0.5 -0.57
discovery 0.01 -0.25 -0.25
RAR 0.44 0.8

Table 4.4.: The pearson correlation coefficient for the last generation of two trials in
the medium maze. All objectives were selected for together with the rarity-objective.

Figure 4.9.: Evolvability plotted against the evolvability-proxies LGE (left) and LGD
(right), which select individuals which evenly distributed lineages and lineages that
cover as many cells of the lineage-grid, respectively. Individuals from both the gene
pool and the population of the last (200th) generation are shown. The individuals
are colored by their fitness value. This reveals that most individuals that score high
on the evolvability-proxy stayed in the area close to the beginning, where there is
low fitness. Results are from two trials in the medium maze. Plots for the other
heuristics and the other maze were similar.

4.6.3. Results for Using Viability to Estimate

Evolvability

A possible reason for the failure of the above heuristics could be that the

diversity of the lineage information is simply to old to be useful in predicting

future success. Ancestors in the lineage were novel at their time, but maybe

are not relevant in whether or not the individual will be able to produce novel

behaviors itself. Therefore the second approach was to use the fate of an

individual’s children to determine whether it was evolvable or not. Therefore,

viability (abbr. VIAB and explained in more detail in 3.9), measures a parent’s
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success in contributing children to the gene pool. As such it is only defined for

individuals that also already are in the gene pool. Individuals that contribute

at an above-average rate to the gene pool receive high viability-scores. The

viability of parents whose children never score high on the selection criteria is

decreased. Although parents receive only credit in retrospect, the hope was

that this becomes useful in situations when the overall progress is slow. Again,

viability’s effect was measured by switching it on and off and by measuring

correlation with evolvability.

Noteworthy, the ability to produce children which are adopted into the gene

pool is not necessarily related to producing children that are spread out over

the maze. Therefore, the second heuristic was not expected to correlate or

influence the evolvability as described above. Nevertheless, its effect on evolv-

ability is rather positive. Figure 4.10 shows how evolvability develops over

time, once when VIAB is selected at regular intervals and when it is selected

for permanently (VIABP). When selecting for VIAB and RAR, the increase

in average evolvability was steeper than on selection for RAR only. Fittingly,

when VIAB was selected for continuously, the development of evolvability mir-

rored that of RAR, but at a higher level. As VIAB and RAR do not correlate

(r = −.29, Table 4.5), they probably contribute to evolvability independently

of each other. Figure 4.10 shows how evolvability and VIAB relate in the gene

pool of the last generation. For this, the population was excluded as newly

created children always have VIAB zero.

Target-objective rEV O rRAR rFIT

VIAB 0.14 -0.29 0.01
VIABP 0.14 -0.43 -0.1
RAR 0.44 0.8

Table 4.5.: The pearson correlation coefficient for the gene pool of the last generation
of two trials in the medium maze. All objectives were selected for together with
the rarity-objective. The current population is excluded as newly created children
always have VIAB zero.
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Figure 4.10.: Evolvability plotted against VIAB (feedback from children): Individ-
uals from the gene pool of the last (200th) generation are shown, taken from two
trials in the medium maze. The individuals are colored by their fitness value as
indicated by the color bar on the right.

Experiments in the next section test whether that small increase in evolv-

ability has a positive effect on the maze performance.

4.6.4. Effect of Viability on Performance

To test its effect on maze performance, viability was run in combination with

rarity, curiosity and fitness. Results averaged over 30 runs in both mazes

are shown in Figure 4.6. The results for the individual mazes are in the ap-

pendix B.5 and B.6. For rarity, the effect of viability is positive, but not

significant. As rarity was already converging perfectly, there was not much

room for improvement. Viability has a slightly positive effect on speed, which

is not significant (see appendix B.7 and B.8). For the other two objectives the

effect is negative, i.e. that it decreases their convergence rate, but also by a

margin too small to be really significant.

To get an idea, how viability compares to the actual evolvability, I ran several

selected objectives in combination with the evolvability objective, generating

200 extra offspring per individual at each timestep and mapping them into a

grid as described in 3.7. For all objectives, the performance with evolvability

or viability is not really different from the runs without them, so that it is

not possible to say whether those objectives have a large impact in the first

place. Due to the high computational effort needed the number of trials run is
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Objectives Convergence Rate Solving Time N

RAR/VIAB 1 126.35 30
RAR 1 132.32 30
CUR 0.5 397.54 30
CUR/VIAB 0.42 397.35 30
FIT 0.37 333.1 30
FIT/VIAB 0.33 255.85 25

Table 4.6.: Convergence rate and average generations until a solution was found when
supplementing different objectives with viability. Maximum number of generations
was 1000, population size 100 and the grid size for rarity and curiosity was set to
15. Results are averaged over both mazes.

Objectives Convergence Rate Solving Time SD N

RAR/VIAB 1 126.35 94.59 30
RAR 1 132.32 234.93 30
RAR/CUR/VIAB 0.92 270.69 214.1 30
RAR/CUR 0.9 327.39 254.47 30
RAR/EVO 0.89 266.71 83.29 13
RAR/CUR/EVO 0.82 322.33 218.31 20

Table 4.7.: A direct comparison of evolvability and its heuristic viability. Results
were averaged over two mazes.

too few to draw any definite conclusions. Yet the impression is that, averaged

over both mazes, evolvability does not help in solving the objectives, whereas

viability does so slightly, if it is used parallel to rarity.

4.7. Biped Locomotion Experiment

To give more substance to the results of the maze-domain, it is attempted to

reproduce them in the considerably more challenging biped domain. Develop-

ing controllers for bipedal robots is a popular problem in ML [7, 6] and has

been used in previous ER works on novelty- and evolvability search [1, 91].

Due to the need for balance, coordination and the discovery of oscillatory pat-

terns it is much harder than the maze domain. Whereas all behaviors in the

maze domain lead the robot somewhere, the biped domain is much more brit-

tle as controllers that do not manage to maintain the robot balanced will just

fall over. For fitness functions, which typically measure the distance between

the starting point and the location where the robot fell, the deceptiveness of

the domain lies in the first steps. At the beginning of evolution, flinging the

robot forwards such that it falls over with a lot of momentum leads to better

60



Chapter 4. Experiments & Results

results than trying to balance the robot and walking slowly. Therefore, even if

a controller discovers a behavior that could contribute to balancing the robot,

it might be discarded as it does not immediately contribute to propelling the

robot forward. One approach to address this is to induce prior knowledge, such

as making the fitness function enforce symmetry [115] or oscillatory patterns.

But restricting the search space based on the experimenters expectations can

hinder the evolutionary process and prevent innovation. For example, impos-

ing oscillation can be helpful once the robot has started walking, but might

make taking the first steps more difficult.

4.7.1. The Biped Robot Setup

To enable the nonlinear-dynamics of walking gaits, the ANN that controls

the robot in this experiment is a continuous time recurrent neural network

(CTRNN). CTRNNs can use different kinds of activation functions and encode

network structures in a way that facilitates the discovery of parallel and oscil-

latory firing patterns. The ANN receives two inputs, one from each foot, which

are one or zero depending on whether the foot touches the ground. Aside this

sparse input, the net receives no further information about the robot’s joints or

its orientation relative for the ground, thus making the problem more difficult.

The biped robot, depicted in Figure 4.11, has six degrees of freedom (DOF),

each of which is controlled by one output neuron of the ANN. Two DOFs in

each hip-joint (pitch and roll) and one in each of the knee-joints DOF (pitch).

The range of the knee allows to bend the knee backwards. This is necessary

because the robot walks on sphere-shaped feet with no ankles and lacks an

upper body which could provide a counterweight for balancing. The ANNs

outputs are interpreted as positions for the joints’ angles, scaled to match the

respective range. The difference between the desired position produced by the

ANN and the actual position of the robot is given to a proportional controller

which applies torque to reduce that disparity.

To encode the CTRNNs, the NEAT-algorithm is adjusted with self-adapting

mutation rates, which influence how strong the individual connections are af-

fected by mutations. These self-adapting mutation rates encode how likely a

connection is subject to mutation and how strong these mutations are on aver-

age. Dependent on which mutation setting a node is following its connections

could be exempted from mutations or subject to many more mutations. The

mutation rates and the association between them and the nodes are them-

selves subject to mutation and can change over time. This is done because
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self-adaptation has been shown to favor evolvability in the biped domain [87].

The mutation settings and the other NEAT parameters are listed in the ap-

pendix. For a more detailed description of the self-adaptation feature, I refer

to [87]. For more more information on the biped robot and the simulation

parameters, see [1] where this experiment is adopted from.

Each controller is simulated for a fixed amount of time (eight seconds) in a

physically realistic simulation. The population size was 100. For each run the

robot that walked farthest is considered the solution. Therefore, the position

of its center of mass is sampled once every 0.25 seconds and the distance

is measured between the starting point and the last sample before ground

contact.

Figure 4.11.: The biped robot has 6 degrees of freedom: One in each knee (pitch)
and two in each hip (pitch and roll). It is controlled by an ANN that receives two
inputs, one from each foot, which are one or zero depending on whether or not the
foot touches the ground. The ANN has one output unit for each DOF, whose values
are translated to a torque value for a proportional controller, reducing the disparity
between the position desired by the ANN and the actual position of the robot’s
joint. Its height is 0.33m. For a more detailed description of the experimental
setup, see [1].

4.7.2. Objectives

The baseline objective will be fitness, which is measured as the straight-line

distance between the robot’s starting and end-point. Similar to the maze-

domain, the robot’s end-position is used as behavioral characterization for

novelty and rarity. Rarity will be computed similar to 3.3, as the entropy of the

grid cell the robot’s end-position is discretized into. But as this domain does

not have any constraints on where to move, another way to discretize the robots

location can be considered. Taking into account the symmetry of the domain,
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an alternate way is to discretize the robots location with concentric circles

instead of rectangular cells. As these circles measure the distance from the

starting point, this adaptation of rarity is then equivalent to fitness frequency

assignment and will therefore be referred to as FFA. For both rarity and FFA,

preliminary tests showed that 0.5m was a good choice for the side-lengths of the

bins. Thus only end-positions more than half a meter apart were considered

different.

For curiosity, the position of the robot’s center of mass was sampled every

0.25 seconds and recorded into a grid. To use entropy selection on the curiosity

objective (frCUR), curiosity values were discretized with a bin side-length of

0.1. As the maximum curiosity for an eight-second walk is approximately 3.5,

this results in 30 different values.

To see whether the rarity objective can make use of temporal information,

temporal sampling of the robot’s location is also used as behavioral charac-

terization. Therefore the Nsamp x,y-positions of the biped’s center of mass

are concatenated into a vector x1, y1, x2, y2, ..., xNsamp , yNsamp . If the robot falls

over, all subsequent time samples are set to the starting location. Similar to

the experiments in 4.4, the temporal-rarity (tRAR) will be computed by keep-

ing track of the frequencies of the robot’s location in different archives, one for

each timestep. Viability and novelty can be adapted without any changes.

In order to keep the computational effort of determining an individual’s

novelty tractable, the size of the archive used to compute the distance to the

15 nearest neighbors was limited. Other approaches that limit the archive

are to simply exclude the oldest members [1, 14]. As this allows the search to

backtrack to behaviors already explored, the approach chosen here was slightly

changed. Similarly, the archive’s size was reduced to 1500 whenever it exceeded

2000 individuals. The 500 behaviors excluded were the ones in the regions least

sparse of the archive. To determine that, the novelty computation only needs

to be limited to include only those neighbors that already are in the archive.

Thus, the backtracking problem was mitigated by excluding those members

that contribute the least to representing where the search has already been.

4.7.3. Results

At first the objectives were run for 6000 generations. The only result visible at

that stage was that curiosity, frequency-curiosity and rarity with viability were

producing results much worse than fitness (see Figure B.1 in the appendix).

Typical behaviors were doing one, at most two steps and falling over. As

the differences between the other objectives were not interpretable the max-
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imum number of generations was increased to 30.000. The deceptiveness of

the domain lies in evolving a gait that can be used beyond the first few steps.

Controllers that did not balance the robot could lunge it about 2m, just by

applying a lot of force to the joints.

For the increased number of generations, the average maximum distance

traveled in the last generation is shown in Table 4.8 and the progress made

over the generations in Figure 4.12. The controllers evolved by fitness traveled

an average distance of 2.9m (SD = .68) before falling over. An video analysis

showed that this distance could be reached when the controller maintained

the robot upright for long enough to execute about 2 or 3 steps. The only

objectives that are at least 2 or more steps beyond that, are FFA (3.36m,

SD = .85) and novelty ( 3.53m, SD = .8). Rarity and temporal rarity are at

about the same distance as fitness with 2.88m (SD = .63) and 3.18 (SD = .76),

respectively. All differences are not significant (see Table B.9 in the appendix),

but due to the high number of generations, the number of trials per objective

was relatively low (N=10), which makes it harder to obtain significant results.

The maximum distance achieved over all trials were 4.2m for fitness, 4.6m for

rarity and temporal rarity, 5.3m for FFA and 5.4m for novelty.

Although the differences in distance were small, a video-analysis of all the

gaits evolved by an objective showed that the objectives tend to evolve different

walking strategies. With fitness as objective, most of the controllers followed

a rather short-sighted strategy: They created angular momentum by spinning

on the spot and then propelled themselves in one direction, trying to avoid

falling over as long as possible. Often this resulted in the robot spinning

about its middle axes, while walking - a strategy hard to maintain for more

than a few steps. Some would, prior to losing their balance, flex one leg very

strongly to lunge themselves forwards in a cartwheel-like manner. 7 out of

10 of the best individuals would use such a tactic, only two were attempting

a ‘normal’ bipedal gait that kept the robot oriented in the same direction.

Similarly, when rarity was computed based only on the end position, 8 out

of 10 evolved gaits implemented the spinning-strategy. When the objectives

where such that it was possible to score high without moving far (tRAR,

FFA and novelty), the majority of the gaits evolved followed the more natural

strategy of walking straight ahead (6, 7 and 9 out of 10). Videos of the most

successful gaits and the two strategies (’spinning’ and ’natural’) can be seen

at https://www.youtube.com/watch?v=qGlM98PJ3wQ.
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Objectives Maximum Distance SD N

NOV 3.53 0.8 10
FFA 3.36 0.85 10
tRAR 3.18 0.76 10
FIT 2.93 0.68 10
RAR 2.88 0.63 10

Table 4.8.: Average maximum distance at each generation for the objectives in the
biped domain. Distance is measured in meters. The maximum number of genera-
tions was 30.000.

5. Discussion

This work shows the usefulness of entropy to model diversity-based objectives,

suggests a way to identify useful search directions in order to avoid convergence

and highlights the difficulty of recognizing evolvability without explicitly test-

ing it. This section discusses each of these implications in more depth by

pointing out their limitations and if relevant, implications for future research.

Finally, it concludes by reviewing the most important results in the light of

very recent findings that reinterpret ER’s role for the field of AI.

5.1. Entropy for Diversity-Objectives

Task-based objective functions are severely limited by local optima and the un-

predictable shape of their fitness landscapes. The fitness paradigm constraints

solutions to be built as a series of fitness-increasing mutations, which makes

addressing complex problems even harder than they already are. An alter-

native route to guide the search is to define the search progress with respect

to the immediate challenges posed by the environment of the population or

agent. Diversity based objectives do this in the most general form, by simply

trying to do as many different things possible. As entropy naturally measures

the dispersion of a distribution, it is well-suited to measure such diversity.

In this work, I show this by using entropy to model two such diversity drives,

curiosity and novelty, that have been shown previously to be able to solve de-

ceptive problems. Curiosity measures the diversity of the robot’s experience,

which in the case of the tasks used in this work is equivalent to a diverse tra-

jectory. Thus, to score high on curiosity the robots have to visit many different

states during their lifetime. Because that is easier when the robot adapts to

the environment, selection for curiosity often evolves robots that perform well.
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Figure 4.12.: Average maximum distance walked for the different objectives for each
generation. Results were averaged over 10 trials.

In the previous work [45], curiosity was also modeled with entropy and ap-

plied to maze-navigation tasks, which it solved irrespective of their degree of

deceptiveness. Aside from reproducing these findings, the contribution of this

work was to test it on the more challenging biped domain. Here, curiosity

selection was not able to overcome the deceptiveness of the domain and evolve

a controller that maintains balance. As an individual’s curiosity is not influ-

enced by what its peers are doing, the population probably converged into one

or few local curiosity-optima it was not able to escape from. Future work on

curiosity might therefore try to account for that by including a way to mea-

sure whether the states a robot is visiting have been explored previously, or

are also being explored by other members of the population. The latter would

be a population-level curiosity. When the history of the population is also

accounted for, curiosity then is equivalent to novelty. Therefore, the great-

est value of curiosity lies in the fact that is conceptionally so simple that it

can be computed on board, as shown in [45] even without global knowledge

of the robot’s position. Yet it’s applicability for challenging domains remains

questionable.

The other measure that was modeled was novelty. Novelty search [1] replaces
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the fitness objective with a measure of behavioral sparsity, so that it favors

robots that behave different than their peers. The interesting and somewhat

counterintuitive result is that although novelty search has no notion of a goal-

behavior, it often finds it faster and more efficiently than search methods that

explicitly try to do so. The reason for this is that novelty search is a divergent

objective, effectuating an open-ended search that never converges. With an

archive that represents where the search has already been, the objective of what

is novel keeps changing over time. Thus, diversity is defined with respect to the

past and present of the entire population. After all simple behaviors have been

explored, doing something new requires doing something more complex, often

by adapting favorable to the environment. In that process, the population

discovers behaviors that would previously have been specified as goals. In order

to use entropy for modeling novelty, an important trade-off is made: Whereas

novelty typically uses a distance metric that returns qualitative distances (such

as behavior A is x different from B) between behaviors, its equivalent modeled

with entropy can only make nominal distinctions (behavior A is different from

B or not). This is a consequence of having to partition the behavior space into a

number of distinct regions in order to be able to interpret the search history as a

distribution. The advantage of this is that the archive can represent the entire

search and the computational effort remains the same, no matter how many

individuals are in the archive. The disadvantage is that there is no difference

between very novel and slightly novel behaviors, which is why its entropic

adaptation was dubbed rarity. Also, when using higher dimensional behavioral

characterizations (BCs), rarity’s archive had to be split up into many archives,

whereas novelty’s distance computation remains the same. For the maze-

domain, this trade-off did not have a negative effect and rarity actually found

solutions a bit faster than novelty. In the more challenging biped domain, this

trade-off was more significant. Novelty-search performed much better than

fitness as it evolved controllers that walked much further and were of a higher

quality than fitness-guided search. Rarity was as bad as fitness, both in terms

of distance walked and the quality of the evolved gaits. Possibly, this was

because rarities measure of distinguishing between behaviors was too coarse.

With only the sparsity of the end-position relevant, the way for a controller to

score high on rarity was to walk further than the other, leading the search into

the same local optima as fitness. This could partially be redeemed by including

the intermediate positions of the robot in extra archives. With this additional

temporal information, rarity also evolved controllers that maintained balanced

and walked with a natural gait.
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Another observation on the novelty-rarity comparison in the biped domain

is that novelty was computationally extremely demanding. Although the size

of its archive was limited, it still required much longer than rarity. If n were

the size of the archive, computing an individual’s novelty score required n2

distance computations to determine its nearest neighbours. This could be

reduced to O(log n) by implementing the archive in a favorable way, such as

using KD-Trees, but will not be as fast as rarity, for which the computation is

a simple look-up in a table whose cost is in O(1).

Therefore, it is interesting to consider ways in which rarity could be im-

proved by adding more archives. Rarities robustness to different resolutions

of behavior discretizations (see section 4.3), suggests that rarity could also be

used with more than one grid size simultaneously, each capturing the search

at a different resolution. Behaviors at the edge of the population would thus

receive different rarity-scores as behaviors in a completely uncharted region of

the behavior space. This could mitigate rarity’s problem of implementing an

imprecise distance metric, without affecting it’s capacity to represent the en-

tire search. The experiments with naiveRAR (see section 4.4) show that using

additional archives does not impair rarity, even if some of them are ill-designed:

NaiveRAR used overly simplistic archives which failed to capture an impor-

tant relation between the behavioral dimensions and which mostly described

features of the behaviors that were irrelevant for the individuals performance,

such as the robots x-location during its first steps. Yet, this only affected the

time it took to evolve solutions. Thus, adding archives to rarity is concep-

tually simple, computationally cheap and adding irrelevant archives seems to

not harm performance. Consequently, supplementing rarity with additional

archives could be an interesting direction for future research, for instance by

varying them in their discretization of the behavior to improve rarity’s ability

to differentiate them or by capturing other interesting aspects of it, hoping to

evolve more complex behaviors.

5.2. Using Entropy to Inform Selection

At their core, rarity and novelty rely on evolutionary search to produce the

undesirable behaviors more often than the interesting ones. For domains where

this is not the case, such as mazes without walls, novelty can be supplemented

with a minimum performance criteria, that all individuals have to fulfill. In

nature this criterion is reproduction and survival. In EC this can be defined

with by the experimenter and would be fitness. This has been shown to be
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successful in [62, 63]. With the search space pruned by such a criteria, the

core assumption of the degenerate behaviors being found more often than the

desirable ones should be of no further concern, as the majority of mutations

usually is deleterious. Consequently, the frequency with which a behavior

occurs can be used as a proxy for its interestingness. This approach includes

the typical optimization methods which aim for a maximum objective value

because high values are usually rare. Yet it implies no constraints on the way

these values are to be reached. Instead, it dynamically changes what objective

values are to be allocated more search resources. By keeping track of the search

with an archive, unfruitful search directions can be identified and avoided.

Particularly interesting is that this concept can be applied to any objective.

In previous work [33], it has been used to guide fitness-based search on a

genetic programming problem. In this work, it is for the first time applied

to ER-problems and to other objectives. In the maze domain, the fitness vs.

rarity comparison (see 4.2 nicely illustrates the benefits of not defining by hand

which behavior is desirable. Whereas fitness picks one particular point in the

behavior space (the goal-area of the maze) and measures the distance to it,

rarity defines as desirable simply what seldom has been found before. As long

as the maze in not completely explored, there must always be a direction in

which the population can move in order to do something new. Consequently,

rarity evenly progresses through the maze and eventually finds not only the

behavior specified by fitness, but also all the others.

The comparison of fitness vs. fitness frequency (see 4.5 illustrates that it is

also better not to specify how a high objective value should be reached. Fitness

implies a series of increasingly beneficial mutations and becomes trapped in the

very deceptive dead-end of the harder maze. As fitness frequency (FFA) only

aims for rare values, it has no disposition for high or low values and also no

constraints on how these values should be reached. It thus can escape the local

optima and solve the hard maze at a rate even higher than another state of the

art method that explicitly favors diversity next to fitness (see Table 4.2). In

the more challenging biped domain, FFA is conceptually equivalent to rarity

with circular states and produces the best results after novelty. Also, the

solutions evolved by FFA are of a high quality, i.e. 7 out of 10 walkers evolve

a natural, forward-oriented gait. By oscillating back and forth between what

fitness values are desirable, FFA overcomes the deceptiveness of the first steps.

When selecting for controllers that walk far, it drives the search towards long

distances. When periodically switching to selection for controllers that walk

shorter distances it uses the same controllers, possibly discovering ways to
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maintain balance.

These findings are supported further by applying selection for rare values

to curiosity. Although a diversity objective, curiosity is maximized and there-

fore susceptible to local optima in the curiosity-landscape. In both the maze-

and biped domain, curiosity and its adaptation frequency curiosity (frCUR)

perform equally well or bad, respectively.

The computational efficiency and ease of implementation make the use of

selection for rarity a valuable method to inform the search and automatically

balance exploration vs. exploitation. It can thus make convergent objectives

into periodically divergent ones so that they can escape local optima in their

respective landscape and are more suited for open-ended search. A main lim-

itation of this approach is that the objective value has to be discretized. This

is especially difficult if one does not know a priori in what range the objective

values are likely to be. Similar to the grid-discretization of rarity, it could be

possible to alleviate this by using grids with different resolutions. A direction

for future research would thus be to investigate the effect of the bin size on

the search progress and potentially use it to affect the degree of exploration

that is executed upon the different parts of an objective range. If, for ex-

ample, the high values of an objective value are deemed more interesting by

the experimenter, they could be discretized with a higher resolution. Another

possible direction for future research would be to empty the archive at certain

points during the search. This would provide a chance for the more evolvable

individuals to rediscover previously well-explored values, akin to the random

extinction approach proposed by Lehman in [79].

5.3. Approximating Evolvability

All of the previous methods, rarity, novelty and curiosity, are concerned with

maintaining diversity by recognizing it once it is produced. Thus, they rely on

the efficiency of the encoding method and the mutation operator to produce

phenotypic variation. Yet some individuals, although behaving in a way that

scores high on a diversity objective, will not be able to produce children that

contribute to the search. For other individuals it might be the opposite: They

behave rather usual but their children tend to do very diverse and new things.

For the former this might be because the behavior of the solution is very fragile,

i.e. small disturbances of the parameters completely mess it up. For the latter,

the behavior might be very reusable. If, for example, the robot discovered

oscillatory patterns, the children might do very different things depending on
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what they use the pattern for.

The key feature that distinguishes the two individuals is their evolvability,

which describes their potential for future evolution. Typical approaches that

measure it exactly [1, 91, 82, 88] do many additional evaluations, which is why

evolvability is ill-suited to be used directly as objective. Yet, doing so would

benefit the search by increasing diversity and evolving solutions that are better

able to generalize, as has been shown in a computationally extensive effort by

Mengistu et al [91]. Thus, selection for evolvability could have the same effect

as regularization-methods in ML [32] and therefore has the potential to increase

the complexity of problems ER can address.

In this work, I tried to avoid doing extra simulations by instead using the

many individuals that are discarded during search. Especially, I tried to infer

an individual’s evolvability from its lineage. The hypothesis tested was that

individuals with a diverse lineage are likely to be evolvable. Approaches taken

are presented in detail in section 4.6.1 and included varying the ancestors

represented in the lineage (ancestors or ancestors + one step mutations), the

length of the lineage (all or only the most recent), the description of behavior

that was passed on from parent to child (end-position or complete path) and

the measure used to differentiate between behaviors (entropy or range of the

distribution). Yet, none of the developed heuristics was successful.

One possible reason for that failure might be that different locations in the

maze have inherently different potential for evolvability, i.e. they are partic-

ularly suited or ill-suited to produce diverse lineages. Especially in the large

starting area of the medium maze, mutations have a high chance to change

the robot’s end location to a different grid cell, leading to a diverse lineage in

the process. These individuals then register as highly evolvable, although they

could be the product of a series of completely deleterious mutations. Contrast-

ing to that, the individuals that actually are evolvable might have progressed

to the narrower areas of the mazes. As those are more restricted, their lineages

will occupy less grid cells and their progress through that area would register

in the grid as a more compact area.

Future work on heuristics for evolvability should therefore account for the

environment the individual is in. In nature, the living conditions in different

niches impose differently strict or forgiving conditions on the genetic or phe-

notypic variability that one population can maintain without going extinct.

Therefore it does not make sense to directly compare these among species of

different niches.
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5.4. Conclusion

Until recently, the prevalent abstraction of evolution’s algorithm was that of

an optimizer, finding the best solution to one problem. Following this view,

it is in direct concurrence to many methods from machine learning, most of

them having a longer tradition and a more solid, elaborated theoretical frame-

work. The more recent view, represented in works on quality-diversity algo-

rithms [14, 64, 15, 9] is that evolutionary algorithms should aim to reproduce

evolution’s potential for finding a diverse range of possible solutions to one

or many related problems. According to this view, EAs main purpose is to

help the experimenter understand the problem by showing how some of its

features relate to each other and how they influence the overall performance.

An argument for this, or maybe rather against the first perspective, is given

by the fact that the best solutions found when searching for diversity are often

better than the ones found by optimization algorithms. First shown by novelty

search, which found solutions only using a measure of behavioral novelty, this is

reaffirmed by the results of this thesis, which abstracts novelty by partitioning

the behavior space in a principled way, and using behavioral characterizations

of different lengths and composition. Recent work with the MAP-elites algo-

rithm [64] abstracted that further, showing that exploring the behavior space

can be explored by means of other measures as well, for instance the percent-

age of a robot’s bone or muscle tissue. The reason these approaches work is

that high-fitness solutions often traverse a path through many areas of that

space, partly with very low fitness potentials - a path that can not be found

by fitness-guided search. Hence, searching for many solutions simultaneously

is better than just searching for one, which sooner or later leads into a local

optimum.

This thesis supports that point by pitting classical optimization against a

new entropy-based selection method for fitness and behavioral characteriza-

tions of varying degrees of usefulness and dimensionality. Instead of defining

a priori what range of an objective value is desirable, this method simply aims

for what range or values so far been achieved least often. Thus, it naturally

includes the past search results in order to allocate to find as many behaviors

possible and avoid becoming trapped by local optima. This superiority of the

new method is shown to work on a deceptive navigation task and a challenging

biped locomotion task. In both domains, it exploits the fact that degenerate

behaviors are pervasive in search spaces and will be found more often than the

desirable ones, effectively using the frequency (measured with entropy) of an
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objective value as a heuristic for its interestingness.

Although not done in this work, this method could easily be adapted to be a

quality diversity method, simply by saving the fittest individual of each cell of

the archive-grid. A very recent adaptation [14] of the most successful quality

diversity algorithm MAP-elites [64] uses two different behavioral characteriza-

tion simultaneously, each of which captured by a separate archive,and achieves

good results on very challenging navigation tasks. This work shows that it is

possible to also use a much higher number of archives, possibly enabling the

experimenter to capture higher dimensional descriptions of behavior or under-

stand the relation between more features of the robot’s interaction. Ultimately,

both of these enhance the reach of ER by leading to a better understanding

of ER’s problems and possibly to more complex end-products of evolutionary

search.
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A. Parameters
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NEAT-parameter Maze Experiment Biped Experiment

trait param mut prob 0.5 0.5
trait mutation power 1 0.1
linktrait mut sig 1 1
nodetrait mut sig 0.5 0.5
weigh mut power 2.5 2.5
recur prob 0 0.5
disjoint coeff 1 1
excess coeff 1 1
mutdiff coeff 0.4 3
mutate only prob 0.25 1
mutate random trait prob 0.1 0.2
mutate link trait prob 0.1 0.1
mutate node trait prob 0.1 0.5
mutate link weights prob 0.9 0.6
mutate toggle enable prob 0 0.1
mutate gene reenable prob 0 0.05
mutate add node prob 0.03 0.005
mutate add link prob 0.05 0.06
recur only prob 0 0.5
pop size 100 100
newlink tries 20 20
babies stolen 0 0
time const mut power - 0.2
time const mut prob - 0.3
bias mut power - 0.2
bias mut prob - 0.3

Table A.1.: Parameters for the NEAT algorithm. Names are unaltered from the
NEAT user page [2].
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Chapter B. Experimental Results

B. Experimental Results

RAR NOV RAR/CUR FIT FIT/DIV CUR

RAR - - - - - -
NOV p=0.348 - - - - -
RAR/CUR p=0.000* p=0.000* - - - -
FIT p=0.006* p=0.055 - - - -
FIT/DIV p=0.000* p=0.002* - - - -
CUR p=0.004* p=0.011* p=0.872 p=0.224 p=0.321 -

Table B.1.: Significance p-values for the differences in solving speed in the medium
maze (see 4.1). P-values are only shown if the column-objective outperformed the
row-objective both in terms of convergence and speed. The statistical test used is a
two-tailed Mann-Whitney-U test.

RAR NOV RAR/CUR CUR FIT/DIV FIT

RAR - - - - - -
NOV p=0.473 - - - - -
RAR/CUR p=0.006* p=0.024* - - - -
CUR p=0.001* p=0.000* p=0.061 - - -
FIT/DIV p=0.001* p=0.001* p=0.009* p=0.080 - -
FIT p=0.000* p=0.000* p=0.000* p=0.000* p=0.000* -

Table B.2.: Significance p-values for the differences in solving speed in the hard
maze (see 4.2). P-values are only shown if the column-objective outperformed the
row-objective both in terms of convergence and speed. The statistical test used is a
two-tailed Mann-Whitneyr-U test.

Objectives Convergence Rate Solving Time STD N

FFA 0.9 363.61 189.32 20
FIT 0.75 316 276.88 20
frCUR 0.55 456.27 256.73 20
CUR 0.3 281.33 243.39 20

u

Table B.3.: Medium-maze-results for replacing the maximum selection mechanism
for a frequency selection mechanism for fitness and curiosity (see 4.5). Results are
averaged over two mazes. For all discretizations, both to identify frequencies and to
differentiate paths for curiosity, the grid size was set to 10.
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Objectives Convergence Rate Solving Time STD N

CUR 0.8 224.75 138.66 20
frCUR 0.65 237.23 168.89 20
FFA 0.45 487.33 289.03 20
FIT 0 0 0 20

Table B.4.: Hard-maze-results for replacing the maximum selection mechanism for
a frequency selection mechanism for fitness and curiosity (see 4.5). Results are
averaged over two mazes. For all discretizations, both to identify frequencies and to
differentiate paths for curiosity, the grid size was set to 10.

Objectives Convergence Rate Solving Time STD N

RAR/VIAB 1 152.37 108.01 30
RAR 1 157.77 140.65 30
FIT 0.73 333.09 284.67 30
FIT/VIAB 0.65 255.85 224.78 20
CUR/VIAB 0.5 441.4 285.39 30
CUR 0.47 471.07 322 30

Table B.5.: Convergence rate and average generations until a solution was found for
the experiment in Section 4.6.4 on the effect of viability on maze performance in the
medium maze.

Objectives Convergence Rate Solving Time STD N

RAR/VIAB 1 100.33 58.57 30
RAR 1 106.87 48.54 30
CUR 0.53 324 262.05 30
CUR/VIAB 0.33 353.3 264.79 30
FIT 0 0 0 30
FIT/VIAB 0 0 0 20

Table B.6.: Convergence rate and average generations and until a solution was found
for the experiment in Section 4.6.4 on the effect of viability on maze performance
for the hard maze.
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RAR/VIAB RAR FIT FIT/VIAB CUR/VIAB

RAR/VIAB - - - - -
RAR p=0.668 - - - -
FIT p=0.008* p=0.006* - - -
FIT/VIAB p=0.062 p=0.059 - - -
CUR/VIAB p=0.002* p=0.002* p=0.315 p=0.107 -
CUR p=0.004* p=0.004* p=0.224 p=0.085 p=0.879

Table B.7.: Significance values for the differences in speed for the experiment in
Section 4.6.4 on the effect of viability on performance in the medium maze. Im-
portantly, none of the differences of between an objective and its combination with
viability is significant.

RAR/VIAB RAR CUR CUR/VIAB FIT

RAR/VIAB - - - - -
RAR p=0.535 - - - -
CUR p=0.000* p=0.001* - - -
CUR/VIAB p=0.000* p=0.000* p=0.833 - -
FIT p=0.000* p=0.000* p=0.000* p=0.000* -
FIT/VIAB p=0.000* p=0.000* p=0.000* p=0.000* p=-1.000*

Table B.8.: Significance values for the differences in speed for the experiment in
Section 4.6.4 on the effect of viability on performance in the hard maze. Importantly,
none of the differences of between an objective and its combination with viability is
significant.

NOV FFA tRAR FIT

NOV - - - -
FFA p=0.970 - - -
tRAR p=0.307 p=0.791 - -
FIT p=0.186 p=0.307 p=0.427 -
RAR p=0.017* p=0.104 p=0.473 p=0.970

Table B.9.: Significance values for the difference in maximum distance walked in the
biped experiment in Section 4.7.3.
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Figure B.1.: Average maximum distance walked for the different objectives for each
generation (see 4.7.3). Results were averaged over 10 trials.
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